Jointly Harnessing Prior Structures and Temporal Consistency for Sign Language Video Generation

YUCHENG SUO, Zhejiang University, Zhejiang, China
ZHEDONG ZHENG, University of Macau, Macau, China
XIAOHAN WANG, Zhejiang University, Zhejiang, China
BANG ZHANG, Alibaba Group, Zhejiang, China
YI YANG, Zhejiang University, Zhejiang, China*

Sign language provides a way for differently-abled individuals to express their feelings and emotions. However, learning sign language can be challenging and time-consuming. An alternative approach is to animate user photos using sign language videos of specific words, which can be achieved using existing image animation methods. However, the finger motions in the generated videos are often not ideal. To address this issue, we propose the Structure-aware Temporal Consistency Network (STCNet), which jointly optimizes the prior structure of humans with temporal consistency to produce sign language videos. We use a fine-grained skeleton detector to acquire knowledge of body structure and introduce short-term cycle loss and long-term cycle loss to ensure the continuity of the generated video. The two losses and keypoint detector network are optimized in an end-to-end manner. Quantitative and qualitative evaluations on three widely-used datasets, namely LSA64, Phoenix-2014T, and WLASL-2000, demonstrate the effectiveness of the proposed method. We hope this work can contribute to future studies on sign language production.

CCS Concepts: • Computing methodologies → Animation.

Additional Key Words and Phrases: Sign Language, Motion Transfer, Video Generation, Jointly Training.

ACM Reference Format:

1 INTRODUCTION

Sign language is a type of visual language that conveys meanings through hand gestures and facial expressions [73]. According to the World Federation of the Deaf (WFD), approximately 72

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2009 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1551-6857/2023/6-ART $15.00
https://doi.org/10.1145/3648368

Fig. 1. The example picture of sign language motion transfer results. Given a source image and a driving video, the model generates a new video clip where the person in the source image performs the sign language motion in the driving video. Compared with the state-of-the-art method TPSMM [93], our method can generate smooth videos while preserving identity attributes such as hair and face. Check out the video example at https://youtu.be/2XL8o34hrHc.

Million people worldwide use sign language [47]. However, learning sign language can be time-consuming and challenging, making it impractical for many people. Additionally, sign language varies depending on the local language and culture [32]. To address this, we aim to animate user photos based on sign language videos, allowing everyone to communicate using sign language without having to learn it.

Over the past few years, significant progress has been made in image animation [64–66, 93]. Given a video and an image containing the same type of object, the goal of image animation is to generate a new video whose object comes from the image and the motion comes from the video. However, when applying existing motion transfer methods to sign language generation, two main limitations arise. Firstly, the importance of body structure is often underestimated, as many works [64–66, 93] extract body keypoints in an unsupervised manner. These keypoints are not always aligned with the semantic body parts, making it difficult to capture detailed motions, especially for small-scale patterns like fingers. As shown in Figure 1, finger motions are often missing or blurred. Secondly, there is a lack of long-term temporal consistency in recent works [64–66, 93] that focus on short-term continuity between two frames. When given a pair of images, these methods only prioritize the quality of the reconstructed single frame during training, as shown in the top part of Figure 2, while ignoring the continuity and consistency of more frames in the future.

To overcome these limitations, we propose the Structure-aware Temporal Consistency Network (STCNet), a human body structure-aware network that generates sign language videos with high quality and continuity. The proposed framework has three main features. First, we employ a fine-grained keypoint detector network that provides strong human body structure knowledge, enhancing hand motion estimation. Second, we propose short-term cycle loss and long-term cycle loss to promote the continuity of the generated videos. Finally, to address the instability of the keypoint detector network’s output, we adopt a jointly training strategy to fine-tune the pre-trained network without additional annotations.

We conduct extensive experiments on three sign language datasets: LSA64 [56], Phoenix-2014T [6], and WLASL-2000 [40]. The results demonstrate that our method outperforms state-of-the-art methods, including Monkey-Net [64], First Order Motion Model (FOMM) [65], Articulated Animation (AA) [66], and Thin-Plate Spline Motion Model (TPSMM) [93], in terms of the quality of the generated videos. As shown in Figure 1, our method generates smooth videos with correct
Jointly Harnessing Prior Structures and Temporal Consistency for Sign Language Video Generation

Existing Methods

\[i+j \text{th Frame} \]

Unsupervised Keypoint Detector

\[i \text{th Frame} \]

Generator

Reconstructed \[i+j \text{th Frame} \]

Our Method

\[i+j \text{th Frame} \]

Fine-grained Skeleton Detector

\[i \text{th Frame} \]

Generator

Reconstructed \[i+j \text{th Frame} \]

\[i+j+q \text{th Frame} \]

Fine-grained Skeleton Detector

\[i+j+q \text{th Frame} \]

Generator

Reconstructed \[i+j+q \text{th Frame} \]

Fig. 2. Comparison between existing methods and our method

Existing methods [64–66, 93] typically use an unsupervised keypoint detector and perform a single-frame generation procedure during training. In contrast, our method utilizes a fine-grained skeleton detector and enforces two types of temporal consistency. The \(\circ \) in the figure indicates that we exchange the source image and the driving image to estimate the motion reversely. The red arrows show the generation order of our method during training.

motion details, as compared to the state-of-the-art method TPSMM. Briefly, our contributions can be concluded as follows:

- We propose a new Structure-aware Temporal Consistency network (STCNet). In particular, we explicitly introduce the prior human keypoints to guide the generation and involve the temporal consistency objective to further regularize the training process.
- Extensive experiments on LSA64 [56], Phoenix-2014T [6], and WLASL-2000 [40] datasets show that our approach surpasses several competitive methods, verifying the effectiveness of the proposed method.

2 RELATED WORKS

2.1 Skeleton keypoint Detection

Skeleton keypoint detection, also known as pose estimation, is to locate the essential parts of people in an image or a video [14]. The pioneering work in deep learning-based pose estimation is DeepPose [74], which outperforms traditional methods based on regression or retrieval [15, 18]. State-of-the-art methods are typically derived from Convolutional Neural Networks [8, 50]. OpenPose [7, 8, 67, 82] is one of the most popular methods in the research community, capable of estimating whole-body pose. In essence, all pose estimation methods can be divided into top-down methods and bottom-up methods [90]. The bottom-up method involves detecting joints first and gathering several joints to estimate the pose of a human. Representative works include DeepCut [53], Associative Embedding [48], PifPaf [36], OpenPifPaf [37], Keypoint Communities [90], etc.

On the contrary, the top-down method involves detecting a human first and then estimating the joints within the bounding box. CFN [30] uses a "Coarse-Fine" network structure to exploit multi-level supervision. CPN [11] introduces a cascaded pyramid network that aims to deal with occluded keypoints. CrowdPose [42] designs a person-joint connection graph to deal with wrong joint assembling and redundant pose prediction. RMPE, also known as Alphapose [19, 43] designs Symmetric Spatial Transformer Network, Parametric Pose NonMaximum-Suppression, and Pose-Guided Proposals Generator to handle inaccurately detected bounding boxes. Inspired by recent
sign language translation works [21, 28, 69, 96], we adopt a keypoint detector to facilitate the sign language understanding in this work. Since every sign language video only contains one signer in the center, we skip the human detection process in practice and fine-tune the off-the-shelf AlphaPose method to extract key points.

Video pose estimation is different from image-based pose estimation since video requires temporal continuity and identity tracking [14, 94]. Cherian et al. [13] propose extending the spatial graph model with temporal links to capture motions of specific human body parts. The extra links ensure temporal consistency with additional parameters. Nie et al. [85] propose a unified spatial-temporal model to jointly accomplish video pose estimation and action recognition, thus the estimated pose is aligned with action semantics. Deepflow [83] and Thin-Slicing [71] are two works using optical flow to improve continuity by introducing temporal information. Pfister et al. [52] utilize similar techniques, demonstrating the effectiveness of optical flow. UniPose [4] leverages the LSTM network to provide the memory of adjacent frames. Recent work DiffusionPose [55] uses a diffusion model to estimate human pose and achieves remarkable results on various datasets. Researchers also curate benchmarks like YoutubePose [10] and PoseTrack [3] for videos in various domains and complex poses. In this paper, we finetune the keypoint detector network in an end-to-end manner, ensuring the temporal consistency of sign language videos.

2.2 Image Animation

Image animation refers to synthesizing action given an image and a driving video. Efros et al. [17] propose a retrieval-based action synthesis method. In recent years, most motion transfer generation networks deploy deep networks [86].

For instance, MoCoGAN [75] decomposes motion and content into separate representations to generate video. Yang et al. propose a two-stage approach, i.e., PSGAN and SCGAN [87], to transfer motions collaboratively. Everybody Dance Now (EDN) [9] is another two-stage motion transfer network. The first stage is to generate the image frame as a whole and the second stage is to realism to the face region. Zhou et al. propose a dance motion transfer network using a spatial transformer network [97]. G3AN [80] is a three-stream video generation network to disentangle motion features. Siarohin et al. propose a series of works on motion transfer including Monkey-Net [64], First Order Motion Model (FOMM) [65], and Articulated Animation (AA) [66]. Monkey-Net is an end-to-end motion transfer network, which learns to detect keypoint in an unsupervised way. FOMM calculates the first-order Taylor expansion in a neighborhood of the keypoint locations. AA transfers the motion from the essential regions of the object. Liu et al. adopt neural-ODEs for motion deformation [44]. Yoon et al. design a network to animate images using UV maps produced by a 3D human model [89]. Thin-Plate Spline Motion Model (TPSMM) by Zhao et al. [93] applies Thin-Plate Spline (TPS) transformation based on FOMM. However, TPSMM needs five sets of keypoints which bring redundancy. In contrast, our work differs from existing works by mining semantic-aware keypoints. Moreover, inspired by the spirit of the cycle consistency [79], we consider the temporal consistency as an essential influence factor of the generated video quality, which is crucial for sign language understanding [12, 22, 41, 54].

Diffusion models [25, 70] recently achieved impressive results on generation tasks like image generation [49] and super-resolution [20]. Researchers also leverage diffusion to generate data for discriminative tasks [88]. Diffusion models sample data from the distribution and gradually add noise by the diffusion process. Then diffusion models learn the reverse process which is to denoise and reconstruct the sample. However, diffusion models require high computing resources. To address this challenge, DDIM [70] boosts the inference speed by skipping step sampling. For conditional generation, GLIDE [49] injects CLIP text features to guide the generation process. Current works substitute the text feature with human pose features to achieve pose-guided video
Jointly Harnessing Prior Structures and Temporal Consistency for Sign Language Video Generation

2.3 Sign Language Production

Sign Language Production (SLP) is a research field related to generating sign language videos, as highlighted in several recent studies [29, 38, 58–60, 62, 63, 91]. Saunders et al. propose an Adversarial Multi-Channel approach [58] to generate sign language pose sequences. Saunders et al. use progressive transformer [60] to generate consecutive pose sequences, improving the BLEU performance. Everybody Sign Now [59] takes the spoken language as input and samples skeleton pose to generate photorealistic sign language videos. Zelinka et al. [91] propose a CNN-based method to deal with text-to-video sign language pose synthesis. AnonySign proposed by Saunders et al. [61] is the most related work, they implicitly encode the style features to generate sign language videos. However, the video generation procedure in their method does not take time-consistency into consideration. Ventura et al. [77] and Duarte et al. [16] deploy Everybody Dance Now (EDN), to generate sign language videos. EDN is a two-stage network that directly takes keypoints as input, yet our method conforms to end-to-end training paradigm and extracts keypoints from sign language videos. SIGNGAN proposed by Saunders et al. [63] aims to produce sign language videos given spoken languages. The sign pose is selected in a given pose dictionary.

3 METHOD

We propose STCNet, a body structure-aware framework that focuses on sign language motion transfer while maintaining the cycle consistency of time. As Figure 3 shows, STCNet consists of four parts, a keypoint detector network, a motion estimation network, an encoder, and a decoder.

3.1 Keypoint Detector Network

To obtain explainable and accurate keypoint locations, we adopt Alphapose model pre-trained on the Halpe dataset [43]. Sign language videos only contain the upper part human body, and the semantic information is revealed by the hand gestures and the facial expressions of the signer. Therefore, we select 21 vital keypoints with 12 on the hands, 5 on the upper body, and 4 on the face to remove redundancy without losing the details. Given the i^{th} frame $I^i \in \mathbb{R}^{H \times W \times 3}$ in a video clip, we pass the image to the Alphapose model F_P and get the result coordinates $K^i \in \mathbb{R}^{21 \times 2}$. The keypoint detection procedure can be formulated as follow:

$$K^i = F_P(I^i).$$

Empirically, we find that the output of two continuous frames within a video clip generated by the pre-trained AlphaPose model differs a lot, especially when the frames are vague. One possible reason behind the large discrepancy between the detection results could be a lack of continuity of time. To address this problem, we fine-tune the keypoint detector along with the training procedure of the other modules. The keypoint detector shares the optimization goals with the other modules, thus no extra annotation is required. Therefore, it is conducted on single frames but preserves the temporal consistency in sign language videos. A violent fine-tuning procedure leads to missing the body structure information provided by the pre-trained model. Hence, we set the learning rate at a smaller value to fine-tune the detection module slowly.
Fig. 3. The Brief Framework. The generator consists of an encoder, a decoder, a keypoint detector, and a motion estimation network. Specifically, the keypoint detector takes the source image I_i and the driving image I_{i+j} as input and passes the location of the keypoints to the motion estimation network to predict the optical flow O and the occlusion masks M. The encoder downsamples the source image to extract features whereas the decoder warps the encoded image according to the predicted optical flow O and occlusion masks M and generates the final output \hat{I}_{i+j}. The detailed structure of the motion estimation network and the decoder is depicted at the bottom. Note that \ominus here indicates element-wise subtract, \oplus indicates the concatenation operation, and \otimes represents element-wise product.

3.2 Motion Estimation Network

The motion estimation network aims to predict a dense optical flow $O_{i \rightarrow i+j} \in \mathbb{R}^{H/4 \times W/4 \times 2}$ indicating the motion of the upper part of the body. $i \rightarrow i+j$ means the model takes the ith frame I_i as the source image and the $i+j$th frame I_{i+j} as the driving image.

Specifically, given 21 pairs of keypoint detected from the source image and driving image, we first use Thin Plate Spline (TPS) transformation [5] to estimate 21 corresponding optical flows. A learnable background predictor is adopted to predict an extra optical flow to approximate the motion of the background [66, 93]. We warp the downsampled source image according to each coarse optical flow mentioned above for later use. Every keypoint is modeled by a Gaussian in a heatmap, which means two sets of heatmaps can be obtained from the source image and the driving image. To emphasize the keypoint location difference between the source image and the driving image, the previously warped images are concatenated with the heatmap difference and then used as the input of the U-Net structure [57] to learn the residual motions. The output of the U-Net network is passed to a softmax layer and then multiplied with the coarse optical flows elementwisely. The final predicted optical flow $O_{i \rightarrow i+j}$ is obtained by summing the multiplied result along the channel axis. Meanwhile, the motion estimation network additionally predicts a set of occlusion masks M in different resolutions via applying a convolutional layer after the U-Net structure. The occlusion masks are applied in the decoder network to mask the unnecessary deformation within the feature map. Overall, the motion estimation process can be summarized as:

$$
M_{i \rightarrow i+j} = F_M(F_U(K^i, K^{i+j})),
$$
$$
O_{i \rightarrow i+j} = F_O(F_U(K^i, K^{i+j})),
$$

where F_U denotes the U-Net structure, F_M is a convolutional layer used to predict the occlusion masks $M_{i \rightarrow i+j}$ in different resolutions, and F_O represents a softmax layer followed by multiplying...
the optical flows estimated by TPS, and a sum operation along the channel axis. Both F_M and F_O take the output of the U-Net model as the input. Note that in the motion estimation network, the driving images during inference only provide motion information and do not involve appearance textures. This enables animation between different signers, which means that even though during training the source image and driving image contain the same signer, we can still use videos of different signers to animate the source image.

3.3 Encoder and Decoder

As Figure 3 shows, the source image $I^i \in \mathbb{R}^{H \times W \times 3}$ is first passed to the encoder to extract features. We adopt a simple but effective “high to low” architecture for the encoder. The intuition is to combine the general information in the low-resolution feature maps and the detailed information in the high-resolution feature maps. The input image I^i is first passed to a convolutional layer to expand the feature channel. Followed by three downsampling blocks, the encoder aims to capture high-level features step by step. Every downsampling block consists of a 3×3 convolutional layer with a stride of 1, an instance normalization layer, a ReLU activation layer, and a pooling layer with a stride of 2. Let F_E denote the encoder model and F_D denote the decoder model. To get the generation result $\hat{I}^{i+j} \in \mathbb{R}^{H \times W \times 3}$, the deformation and decoding processes are carried on concurrently and progressively and can be formulated as:

$$\hat{I}^{i+j} = F_D(F_E(I^i), M_{i \rightarrow i+j}, O_{i \rightarrow i+j}).$$ \hspace{1cm} (3)

As shown in the bottom of the Figure 3, the encoded feature map in the lowest resolution (i.e., the output of the third downsampling block in the encoder) is first warped according to the optical flow $O_{i \rightarrow i+j}$ and then multiplied by the occlusion mask $M_{i \rightarrow i+j}$ in the corresponding resolution. Followed by a series of Resblocks, the model learns the residual information. In particular, a Resblock contains two 3×3 convolutional layers and a shortcut connection [24]. The input of each convolutional layer in the Resblock is normalized by an instance normalization layer and activated by a ReLU layer. We then warp the middle-resolution feature map (i.e., the output of the second downsampling block in the encoder) according to the optical flow $O_{i \rightarrow i+j}$ and multiply the result by the occlusion mask. The warped middle-resolution feature map is concatenated with the upsampled output of the previous Resblocks and then passed to another series of Resblocks. Likewise, the feature map in the highest resolution (i.e., the output of the first downsampling block in the encoder) is also warped by the optical flow, multiplied by the occlusion mask, concatenated with the output of the previous Resblocks, and passed to some other Resblocks. The decoding process ends up with a final convolutional layer which decreases the channel number to three. We use a sigmoid layer to restrict the output value and get the final result \hat{I}^{i+j}. Similarly, we can get the result of the other generation procedures depicted in the same training iteration, which can be formulated as:

$$\hat{I}^{i+j+q} = F_D(F_E(\hat{I}^{i+j}), M_{i+j \rightarrow i+j+q}, O_{i+j \rightarrow i+j+q}),$$
$$\hat{I}^{i+j} = F_D(F_E(\hat{I}^{i+j+q}), M_{i+j \rightarrow i+j}, O_{i+j \rightarrow i+j}),$$
$$\hat{I}^i = F_D(F_E(\hat{I}^{i}), M_{i \rightarrow i}, O_{i \rightarrow i}).$$ \hspace{1cm} (4)

3.4 Optimization

During training, we apply a compound reconstruction loss as the optimization goal. Pyramid perceptual loss, middle feature loss, short-term cycle loss, and long-term cycle loss are the main components of reconstruction loss.

Perceptual Loss. Perceptual loss is proposed by Johnson et al. and is widely used in image transformation and reconstruction [33]. We minimize the L1 distance between two feature maps in five
different middle layers extracted by a pre-trained VGG-19 network. The loss can be depicted as:

$$L_p = \sum_n |V^n(i^{i+j}) - V^n(i^{i+j})|,$$

(5)

where i^{i+j} denotes the ground truth driving image and i^{i+j} means the generated image. V^n represents the nth layer output of the pre-trained VGG-19 network [68]. In practice, we downsample the image pair and conduct a pyramid perceptual loss to facilitate the reconstruction supervision in different resolutions [64].

Warp Consistency Loss. We also constrain the warped encoded image to simulate the encoded driving image in the generation network [93]. To this end, the warp consistency loss is defined as:

$$L_w = \sum_r |W(F_E^r(i^i), O_{i\rightarrow i+j}) - F_E^r(i^{i+j})|.$$

(6)

Note that i^i denotes the source image, and i^{i+j} represents the driving image. F^r_E means the rth downsampling block in the encoder architecture. W is the warping operation according to the predicted optical flow $O_{i\rightarrow i+j}$.

Cycle-Consistency Losses. Temporal continuity is an essential influence factor for video generation since the real world is smooth and coherent. We propose two types of cycle-consistency losses: short-term cycle loss and long-term cycle loss to ensure temporal continuity. The short-term cycle loss is defined as:

$$L_s = |j^{i+j} - \bar{j}^{i+j}|.$$

(7)

Let j^{i+j} denote the image generated by the first generation procedure, which means the model takes the ith frame i^i as the source image and the $i + j$th frame i^{i+j} as the driving image. \bar{j}^{i+j} is the image generated by the third generation procedure. Although sharing the same driving image with the first generation procedure, the third procedure considers the output of the second generation procedure j^{i+j+q} as the source image. Based on the temporal consistency hypothesis, the short-term cycle loss minimizes the L_1 distance between j^{i+j} and \bar{j}^{i+j}. In other words, the short-term cycle loss allows the model to generate the same results given different source images and the same driving image. We also adopt the long-term cycle loss, an augmented version of the original cycle loss. The long-term cycle loss is defined as:

$$L_l = |\bar{i}^i - i^i|.$$

(8)

The long-term cycle loss performs a larger cycle compared to the previous short-term cycle loss as shown in Figure 2. We aim to consolidate the cycle consistency by minimizing the L_1 distance between the output of the fourth generation procedure \bar{i}^i and the ith frame i^i. Overall, the short-term cycle loss and the long-term cycle loss provide temporal self-supervision, promoting the continuity and consistency of the generated videos.

The overall loss function is a combination of the above losses:

$$L_{total} = \lambda_p L_p + \lambda_w L_w + \lambda_c (L_s + L_l).$$

(9)

The pyramid perceptual loss is considered the most essential reconstruction loss, thus we follow existing works [93] and set λ_p to 10. λ_w represents the weight of the warp consistency loss and is set to 1. The short-term cycle loss and long-term cycle loss share the same weight which is 2.

Training Strategy. As Figure 2 shows, existing motion transfer networks usually take an image pair as input and perform the generation procedure once to calculate the reconstruction loss. This training mode neglects the temporal information in a video clip, thus the generation results vary when given the same driving image but different source images picked from the same video. To address this problem, our framework conducts a cyclic end-to-end jointly training strategy. For every iteration, the model randomly chooses three frames from a video clip as input and performs
Jointly Harnessing Prior Structures and Temporal Consistency
for Sign Language Video Generation

Fig. 4. Qualitative comparison. We compare our method with existing methods under the transfer setting on three datasets, i.e., LSA64 [56], Phoenix-2014T [6], and WLASL-2000 [40]. Given the same source image driven by different driving images, we show the generated result. Note that the identity of the driving image is different from the identity of the source image. Our method keeps identity attributes of the source image while transferring fine-grained motion details from the driving image (highlighted in white dashed boxes).

the generation procedure four times. The short-term cycle loss is calculated between \hat{I}_{i+j} and \hat{I}_{i}, while the long-term cycle loss is calculated between \hat{I}_{i} and I_{i}. We consider the temporal cycle-consistency as the prior hypothesis which helps the model learn the temporal information. The benefit of our training strategy is that the models can promise strong temporal robustness and generate videos with high continuity. Every rose has its thorn, the proposed strategy could be time-consuming in one iteration but converges quickly overall. Since the pre-trained image-based keypoint detector network does not maintain video continuity when facing blurred frames in a video clip, we jointly optimize the keypoint detector network and the generator network using the same optimization objective without extra human body structure annotations.

Inference Strategy. Similar to the training stage, the model takes two images as input for every generation procedure during testing. The model generates a new image, which resembles the target motion by deforming the source image. To generate the whole video clip, we further use the first image of a video clip as the source image and other frames as the driving images in sequence.

4 EXPERIMENTS

4.1 Dataset and Evaluation

LSA64 [56] is a small-scale dataset containing 64 words in Argentinian Sign Language (LSA). LSA64 consists of 3200 sign language videos performed by 10 different signers. We use videos in 8 word categories among 64 classes as the test set and the remaining videos as the training set.

Phoenix-2014T [6] is a German sign language dataset consists of 7738 videos performed by 9 different signers wearing dark clothes in front of a grey background. We follow the setting in the original dataset where 7096 videos are used for training and the rest 642 videos for testing.

WLASL-2000 [40] is a large-scale word-level American Sign Language (ASL) dataset including around 2000 words performed by more than 100 signers. There are 21083 videos in total and we use the official train-test split.
Table 1. Results for the four competitive methods and our method under the reconstruction setting on the three datasets. Three image quality evaluation metrics are adopted to test the reconstruction ability of models.

<table>
<thead>
<tr>
<th>Method</th>
<th>\mathcal{L}_1 ↓</th>
<th>SSIM ↑</th>
<th>LPIPS ↓</th>
<th>\mathcal{L}_1 ↓</th>
<th>SSIM ↑</th>
<th>LPIPS ↓</th>
<th>\mathcal{L}_1 ↓</th>
<th>SSIM ↑</th>
<th>LPIPS ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monkey-Net [64]</td>
<td>0.0121</td>
<td>0.9489</td>
<td>0.0217</td>
<td>0.0340</td>
<td>0.8314</td>
<td>0.0784</td>
<td>0.0242</td>
<td>0.8786</td>
<td>0.0623</td>
</tr>
<tr>
<td>FOMM [65]</td>
<td>0.0186</td>
<td>0.9151</td>
<td>0.0274</td>
<td>0.0253</td>
<td>0.8681</td>
<td>0.0461</td>
<td>0.0260</td>
<td>0.8726</td>
<td>0.0587</td>
</tr>
<tr>
<td>AA [66]</td>
<td>0.0110</td>
<td>0.9493</td>
<td>0.0187</td>
<td>0.0190</td>
<td>0.9077</td>
<td>0.0365</td>
<td>0.0178</td>
<td>0.9118</td>
<td>0.0415</td>
</tr>
<tr>
<td>TPSMM [93]</td>
<td>0.0109</td>
<td>0.9499</td>
<td>0.0203</td>
<td>0.0188</td>
<td>0.9149</td>
<td>0.0327</td>
<td>0.0158</td>
<td>0.9218</td>
<td>0.0374</td>
</tr>
<tr>
<td>Ours</td>
<td>0.0104</td>
<td>0.9533</td>
<td>0.0170</td>
<td>0.0172</td>
<td>0.9211</td>
<td>0.0302</td>
<td>0.0153</td>
<td>0.9273</td>
<td>0.0313</td>
</tr>
</tbody>
</table>

Evaluation Metrics. (1) Manhattan Distance (\mathcal{L}_1) [76] is the mean \mathcal{L}_1 distance between every pixel of the generated frame and the ground-truth frame. Lower \mathcal{L}_1 distance indicates higher reconstruction quality. (2) Structural SIMilarity (SSIM) [81] compares the resemblance between two images concerning luminance, contrast, and structure. Higher value means higher generation quality. (3) Learned Perceptual Image Patch Similarity (LPIPS) [92] proposed by Zhang et al. is a metric used to compare the perceptual similarity between two images. We adopt the default Alexnet [39] version here. Lower value indicates better reconstruction quality.

4.2 Implementation Details

We deploy a single Tesla V100 GPU to train models on every dataset. According to the dataset size, we train 100 epochs, 200 epochs, and 300 epochs for LSA64, Phoenix-2014T, and WLASL-2000 respectively. The resolution of frames is resized to 128×128. Following existing works [66, 93], the generator network and the motion estimation network are trained by the Adam Optimizer [35] with $\beta_1 = 0.5, \beta_2 = 0.99$. We set the initial learning rate to 0.0002 except for the keypoint detector network and apply a multistep scheduler to decay the learning rate. The learning rate decay factor γ is set to 0.1. To balance the memory cost and the training speed, we adopt a batch size of 16. In terms of the keypoint detector network, we set the initial learning rate to 0.00002 while the decay happens along with the generator network. The code is based on Pytorch [51]. We will make our code open-source for reproducing all experiments.

4.3 Quantitative Results

We compare our method with four previous representative works for motion transfer, including Monkey-Net [64], FOMM [65], AA [66], and TPSMM [93]. We re-trained all these works following the best setting reported in their papers for comparison. As shown in Table 1, the proposed method surpasses other methods and reaches the state-of-the-art results of all three metrics on three datasets. The results verify that our method can generate video in high fidelity by recovering more human body structure details. The reason is that our keypoint detector learns 21 explainable keypoints, making the motion estimation model focus on the motion of essential body parts accurately. Our method predicts 12 keypoints located on the hands, which explicitly makes the motion estimation network pay attention to fine-grained finger motions.

4.4 Qualitative Results

Different from the reconstruction setting in the quantitative comparison, we test the transferability of our method via qualitative analysis. As Figure 4 shows, we select a source image and multiple driving videos with different identities to compare the animation quality (details highlighted in the white dashed boxes). For all three datasets, our method maintains high identity consistency and correct motion, especially in facial expression and hand details. The pre-trained keypoint detector model explicitly raises the attention of the motion estimation network toward the hand motions.
Jointly Harnessing Prior Structures and Temporal Consistency
for Sign Language Video Generation

Table 2. Ablation study on the proposed short-term cycle loss and the long-term cycle loss. We train the models while removing the losses in turn on the LSA64 dataset and then test the reconstruction ability using three metrics.

<table>
<thead>
<tr>
<th>L₁</th>
<th>L₃</th>
<th>L₁ ↓</th>
<th>SSIM ↑</th>
<th>LPIPS ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>0.0106</td>
<td>0.9516</td>
<td>0.0179</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>0.0105</td>
<td>0.9519</td>
<td>0.0177</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>0.0105</td>
<td>0.9526</td>
<td>0.0175</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>0.0104</td>
<td>0.9533</td>
<td>0.0170</td>
</tr>
</tbody>
</table>

Table 2. Ablation study on the proposed short-term cycle loss and the long-term cycle loss. We train the models while removing the losses in turn on the LSA64 dataset and then test the reconstruction ability using three metrics.

Fig. 5. Qualitative results of various complex backgrounds on WLASL and BOBSL datasets.

and the facial expressions, providing more details in the generation results. Monkey-Net [64] and FOMM [65] show poor motion transfer capability on every dataset. AA [66] and TPSMM [93] have a robust capability to capture the motion and preserve the correct body structure. However, the identity attributes of the generated image, such as hair and face, are relatively blurred with the identity of the driving image, especially on the Phoenix-2014T dataset.

Apart from the single-frame fidelity, we also provide visual results for the video continuity comparison in Figure 1. The motion in the reconstructed video is smoother than in the videos generated by other methods. The end-to-end training strategy empowers the generator network with strong temporal consistency.

4.5 Ablation Studies

Do the proposed cycle-consistency losses work? Table 2 shows the results of adopting the short-term cycle loss and long-term cycle loss on the LSA64 dataset. In particular, the L₁, SSIM, and LPIPS of the vanilla model trained without the two losses arrive at 0.0106, 0.9516, and 0.0179 respectively. We could observe two points: (1) Compared with the vanilla model, the short-term cycle loss and the long-term cycle loss can individually boost the reconstruction quality of the trained model. The short-term cycle loss has a larger regularization impact on the reconstruction. (2) The short-term and long-term consistency losses are complementary. The model achieves the best performance (-0.0002 for L₁, +0.0017 for SSIM, and -0.0009 for LPIPS) when both the two proposed losses are deployed. We think both losses ensure video continuity and robustness by refraining from the unrecoverable movements.

Is the model sensitive to the cycle-consistency losses? To test whether the model is sensitive to the weight of the cycle-consistency losses, we apply another experiment to explore the proper
Table 3. Ablation study on the weight of the proposed losses. We train the same model using different \(\lambda_c \) values and test the reconstruction ability on the LSA64 dataset.

<table>
<thead>
<tr>
<th>(\lambda_c)</th>
<th>(\mathcal{L}_1 \downarrow)</th>
<th>SSIM (\uparrow)</th>
<th>LPIPS (\downarrow)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.0106</td>
<td>0.9513</td>
<td>0.0179</td>
</tr>
<tr>
<td>1</td>
<td>0.0105</td>
<td>0.9528</td>
<td>0.0176</td>
</tr>
<tr>
<td>2</td>
<td>\textbf{0.0104}</td>
<td>\textbf{0.9533}</td>
<td>\textbf{0.0170}</td>
</tr>
<tr>
<td>5</td>
<td>0.0106</td>
<td>0.9518</td>
<td>0.0175</td>
</tr>
<tr>
<td>10</td>
<td>0.0105</td>
<td>0.9518</td>
<td>0.0177</td>
</tr>
</tbody>
</table>

Fig. 6. Ablation study on different learning rates of the keypoint detector network. We provide the visual result on the Phoenix-2014T dataset using different learning rates of the keypoint detector network.

shared weight \(\lambda_c \). As shown in Table 3, we attempt five different values of the weight including 0.5, 1, 2, 5, and 10. Under the same reconstruction setting carried out in the quantitative section, 2 is the optimal value for \(\lambda_c \). The model is not sensitive to the value of \(\lambda_c \), yet a too-large or too-small value of \(\lambda_c \) could harm the performance. For instance, compared with setting \(\lambda_c \) to 2, the performance decreases when setting \(\lambda_c \) to 0.5 (+0.0002 \(\mathcal{L}_1 \), -0.0020 SSIM and +0.0009 LPIPS) or 10 (+0.0001 \(\mathcal{L}_1 \), -0.0015 SSIM and +0.0007 LPIPS). We consider the reason is that lower weight for the cycle losses does not offer enough penalty on the cycle consistency. Meanwhile, a way larger weight could force the model to overfit the cycle losses and weaken the supervision provided by the reconstruction loss. Hence, we select 2 as the value of \(\lambda_c \) to balance the influence of the cycle losses and the reconstruction loss.

Shall we fine-tune the keypoint detection network? To explore whether the fine-tuning procedure of the keypoint detector network is essential, we conduct an ablation experiment on the Phoenix-2014T dataset. In particular, we set the learning rate of the keypoint detector network to 0, 0.0002, and 0.00002 and test the motion transfer ability of the models. The visual results are
shown in Figure 6 and 0.00002 turns out to be the proper learning rate for the keypoint detector network. When we fix the parameters of the keypoint detector network, the transfer results are not ideal. The pre-trained keypoint detector model does not leverage the temporal information in video clips, leading to instability when facing blurred frames. The results demonstrate the importance of the fine-tuning process. Additionally, a large learning rate brings distortions in the face since it forces the pre-trained model to forget the prior human body structure information, making the generator model capture the wrong identity and background texture information. Therefore, to keep fine-grained finger details while avoiding losing body structure information, we set the learning rate of the keypoint detector network to 0.00002.

Is STCNet robust to complex backgrounds? To explore whether STCNet is robust to different backgrounds, we provide additional qualitative results on the WLASL dataset [40] and BOBSL dataset [2] as shown in Figure 5. BOBSL is a large-scale dataset of British Sign Language (BSL) containing about a total of 1400 hours videos of BBC broadcast footage in different backgrounds. Results show that the proposed STCNet is capable of videos with complex backgrounds like classrooms and studios. Although STCNet does not explicitly restrict keeping the background, we still observe that the learned decoder model is able to preserve the video background and correct human motion. It is worth mentioning that we directly use the model trained on the WLASL dataset to generate results on the BOBSL dataset. The impressive result indicates that STCNet has the ability to generalize to different datasets.

Can we use a different network architecture? We utilize the convolutional encoder and decoder architecture, following baseline methods for a fair comparison. We also try a different visual encoder backbone i.e., HRNet [72], on the LSA64 dataset. The result is shown in Table 4. We find that our light-weight encoder model is competitive with the HRNet.

Why choosing Alphapose as the keypoint detection network? We test OpenPose [7, 8, 67, 82] and AlphaPose [19, 43]. As shown in Figure 7, AlphaPose detects accurate finger keypoints, yet OpenPose somehow fails to detect finger keypoints. Therefore, we select AlphaPose as default instead of OpenPose.
5 CONCLUSION

In this paper, we propose a sign language motion transfer framework called Structure-aware Temporal Consistency Network (STCNet). Different from existing works, STCNet leverages prior human body structure knowledge and temporal consistency for sign language video generation. We also introduce a pair of cycle-consistency losses to fully exploit temporal information within sign language videos and further improve the temporal continuity of the generated videos. Extensive experiments verify that our method could generate competitive videos with accurate motion and high-fidelity video continuity compared with existing works. In the future, we will continue exploring the potential of applying this method to other relevant research fields [26, 45, 46, 84], such as data augmentation for sign language recognition [1, 6, 28], clothing / makeup try-on according to keypoints [23, 27, 31] and 3D person re-identification [95].

Broad Impact. This research has the potential to improve social communication and inclusion for people who rely on sign language as a means of communication.

REFERENCES

Jointly Harnessing Prior Structures and Temporal Consistency for Sign Language Video Generation

[23] Xintong Han, Zuxuan Wu, Zhe Wu, Ruichi Yu, and Larry S. Davis. 2018. VITON: An Image-Based Virtual Try-On Network. In CVPR.

[40] Dongxu Li, Cristian Rodriguez, Xin Yu, and Hongdong Li. 2020. Word-level deep sign language recognition from video: A new large-scale dataset and methods comparison. In WACV.

Jointly Harnessing Prior Structures and Temporal Consistency for Sign Language Video Generation

[92] Jian Zhao and Hui Zhang. 2022. Thin-Plate Spline Motion Model for Image Animation. In CVPR.

Received June 2023; revised xx xxxx; accepted xx xxxx