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Abstract

Composed image retrieval extends content-based image retrieval systems by
enabling users to search using reference images and captions that describe
their intention. Despite great progress in developing image-text composi-
tors to extract discriminative visual-linguistic features, we identify a hitherto
overlooked issue, triplet ambiguity, which impedes robust feature extraction.
Triplet ambiguity refers to a type of semantic ambiguity that arises between
the reference image, the relative caption, and the target image. It is mainly
due to the limited representation of the annotated text, resulting in many
noisy triplets where multiple visually dissimilar candidate images can be
matched to an identical reference pair (i.e., a reference image + a relative
caption). To address this challenge, we propose the Consensus Network (Css-
Net), inspired by the psychological concept that groups outperform individ-
uals. Css-Net comprises two core components: (1) a consensus module with
four diverse compositors, each generating distinct image-text embeddings,
fostering complementary feature extraction and mitigating dependence on
any single, potentially biased compositor; (2) a Kullback-Leibler divergence
loss that encourages learning of inter-compositor interactions to promote
consensual outputs. During evaluation, the decisions of the four compositors
are combined through a weighting scheme, enhancing overall agreement. On
benchmark datasets, particularly FashionIQ, Css-Net demonstrates marked
improvements. Notably, it achieves significant recall gains, with a 2.77% in-
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crease in R@10 and 6.67% boost in R@50, underscoring its competitiveness
in addressing the fundamental limitations of existing methods.

Keywords: Noisy Annotation, Data Ambiguity, Compositional Image
Retrieval, Image Retrieval with Text Feedback, Multi-modal Retrieval

1. Introduction1

Image retrieval plays a pivotal role in computer vision and proves to2

be valuable in many applications, such as product search (Guo et al., 2019;3

Sharma and Vishvakarma, 2019; Guo et al., 2018), internet search(Noh et al.,4

2017) and fashion retrieval (Liu et al., 2016; Liao et al., 2018). Prevalent im-5

age retrieval approaches include image-to-image retrieval (Deng et al., 2019;6

Fan et al., 2019; Sheng et al., 2020; Hafner et al., 2022) and text-to-image7

retrieval (Zhen et al., 2019; Zheng et al., 2020; Guerrero et al., 2021; Wang8

et al., 2022), which endeavor to locate the image of interest using a single9

image or descriptive texts as a query. Despite significant progress, users of-10

ten lack a precise search target in advance but instead seek categories, such11

as shoes or clothing. Therefore, an interactive system is highly desirable12

to assist users to reconsider their intentions, as depicted in Fig. 1. Hence,13

Composed image retrieval, which aims to search the image of interest given14

the composed query consisting of a reference image and a relative caption15

describing the modification, has attracted great attention (Vo et al., 2019;16

Chen et al., 2020; Lee et al., 2021; Kim et al., 2021; Wen et al., 2021).17

Recent studies addressing the task of composed image retrieval primar-18

ily concentrate on extracting discriminative representations from image-text-19

image triplets. For example, TIRG(Vo et al., 2019), VAL(Chen et al., 2020),20

and CoSMo(Lee et al., 2021) propose different ways to modify the visual fea-21

tures of the reference image conditioned on the relative caption. TIRG uses a22

simple gating and residual module, VAL devises a visual-linguistic attention23

learning framework, and CoSMo introduces the content and style modula-24

tors. Additionally, CLVC-Net (Wen et al., 2021) and CLIP4cir (Baldrati25

et al., 2022) devise more intricate multi-modal fusion modules to accentu-26

ate the modifications of the reference image. CLVC-Net uses local-wise and27

global-wise compositors, while CLIP4cir finetunes the CLIP (Radford et al.,28

2021) text encoder and trains a combiner network to fuse features.29

Despite the significant success, these works fail to address an inherent30

problem of the composed image retrieval task: the ambiguity of the training31
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I want a similar shoes like this one but have black and 

grey plaid on the middle.

I understand, this one is suitable.

Thanks, it is exactly what I am looking for.

Recommend me some leisure shoes.

How about these shoes?  

Figure 1: Schematic illustration of the composed image retrieval system. Through
using a reference image and a relative caption, the system endeavors to precisely
retrieve the intended target image from all candidate images.

data triplets, i.e., triplet ambiguity. Triplet ambiguity originates from32

the annotation process where annotators focus on single data triplet, and33

frequently describe simple properties such as color and size, while neglect-34

ing more fine-grained details, such as location and style. Consequently, many35

noisy triplets exist where candidate images meet the requirement of the com-36

posed query but are not annotated as the desired ground-truth target image,37

especially when the relative caption is brief. Similar annotation ambiguity38

is also observed in pair-wise data (Wray et al., 2021; Falcon et al., 2022)39

and remains challenging. As shown in Fig. 2, existing methods treat com-40

posed image retrieval as an instance-level retrieval, that is, given a reference41

pair (comprising a reference image and a relative caption), only the anno-42

tated target image is considered as the correct image to retrieve. In fact,43

due to the limitation of the text description, many candidate images within44

the dataset are semantically similar to the point of being identical, but are45

treated as the negative counterparts, thus producing many noisy triplets.46

These noisy triplets compromises the representation learning of the single47

compositor, since the metric learning objective in this task aims to push48

away these false-negative samples from the composed query. Empirically, we49

3



“is black ” “replace pink with black”

FashionIQ ShoesFashion200k

“has two straps”
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Figure 2: Illustration of the triplet ambiguity problem. Triplet ambiguity denotes
multiple false-negative samples in the dataset as the annotator usually see one
triplet with true match ( ) at a time, while neglecting other candidates ( ).

verify the existence of triplet ambiguity in Sec. 4.2.50

To relieve the triplet ambiguity problem, we propose a straightforward51

and effective Consensus Network (Css-Net) for composed image retrieval, as52

illustrated in Fig. 3(a). The key idea underpinning our method to allevi-53

ate the triplet ambiguity is “two heads are better than one” in short. To54

be more specific, an individual often errs due to the biases caused by noisy55

triplets, but groups are less susceptible to making similar mistakes, thereby56

circumventing sub-optimal solutions. This is known as the psychological find-57

ing(Hinsz, 1990) that groups perform better than individuals on the memory58

task. Consequently, we aim to (1) develop a consensus module (group) com-59

posed of compositors possessing diverse knowledge to jointly make decisions60

during evaluation and (2) encourage learning among different compositors to61

minimize their biases learned on noisy triplets by employing an additional62

Kullback Leibler divergence loss (KL loss) (Kullback and Leibler, 1951).63

Css-Net ensures that the compositors possess distinct knowledge in two64

ways: • Motivated by the finding (Lin et al., 2017; Miech et al., 2021) that65

the image features of high-resolution are semantically weak, while the image66

features of low-resolution are semantically strong, we employ two image-text67

compositors at different depths of the same image encoder, (i.e., block3 and68

block4 of the ResNet (He et al., 2016)). The former focuses more on detailed69

change like “has a purple star pattern”, while the latter emphasizes more70
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overall change such as “is modern and fashional”. • Unlike the image-text71

compositor that uses relative caption to describe what to change on the72

reference image, we devise the text-image compositor to capture the tex-73

tual cues based on text-to-image retrieval, where the reference image implies74

what to preserve for the referenece image. See details in Sec. 3.1. To min-75

imize the negative impact of triplet ambiguity during training, we impose76

a KL loss between two image-text compositors. The KL loss promotes two77

compositors to learn from each other and reach a consensus, which is similar78

to supervision from peers in a group, as it helps each compositor to reduce79

its own bias and thus avoids overfitting to the annotated target image.80

In summary, our contributions are as follows:81

• We have identified an inherent issue within the context of composed82

image retrieval, namely triplet ambiguity, which we subsequently confirm83

through initial experimental investigations (see Fig. 2 and 4). This problem,84

stemming from the inherent noisiness of the annotation process, results in85

suboptimal model learning, as it compromises the extraction of discriminative86

features that integrate visual and linguistic information.87

• To relieve triplet ambiguity, we introduce the Consensus Network (Css-88

Net) featuring a consensus module with four distinct compositors for collab-89

orative training (see Table 5) and joint inference (see Table 6).90

• Extensive experiments show that the proposed method minimizes the91

negative impacts of noisy triplets. On three prevalent public benchmarks,92

we observe that Css-Net significantly surpasses the current state-of-the-art93

competitive methods, e.g., with +2.77% Recall@10 on Shoes, and +6.67%94

Recall@50 on FashionIQ (see Table 1, 2, and 3).95

2. Related Work96

Cross-modal Image Retrieval. Cross-modal image retrieval has attracted97

wide attention from researchers. The most popular patterns of image re-98

trieval are image-to-image matching (Zheng et al., 2017; Deng et al., 2019;99

Sun et al., 2020; Wu et al., 2017; Dai et al., 2018; Liu et al., 2022; Qu et al.,100

2024) and text-to-image matching (Liu et al., 2019; Zhang et al., 2020; Liu101

et al., 2022; Zhang et al., 2022; Li et al., 2024). Although these paradigms102

have made great progress, they do not provide enough convenience for users103

to express their search intention. Therefore, more forms of image retrieval104

with flexible queries such as sketch-based image retrieval (Deng et al., 2020;105

Wang et al., 2021; Li et al., 2022; Liang et al., 2024) have emerged. In this106
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work, the composed image retrieval task involves a composed query of a ref-107

erence image and a relative caption. To tackle this task, recent works (Vo108

et al., 2019; Chen et al., 2020; Yang et al., 2021; Zhang et al., 2021; Lee et al.,109

2021; Wen et al., 2021; Gu et al., 2021; Zhao et al., 2022; Han et al., 2023)110

devise diverse composition architectures to capture the visual-linguistic re-111

lation. Unlike the methods described above, our Css-Net does not propose112

complicated compositors. Instead, our work mainly focuses on reducing sin-113

gle compositor biases to alleviate the identified triplet ambiguity problem.114

Attention Mechanism. The attention mechanism is widely used in lan-115

guage and vision tasks in machine learning to capture the relations between116

features. This mechanism is also inspired by a psychological finding (Cor-117

betta and Shulman, 2002) that humans observe and pay attention to specific118

parts as needed. In the composed image retrieval task, many works use119

the attention mechanism to design the image-text compositor. For example,120

VAL(Chen et al., 2020) employs self-attention to capture the image-text re-121

lations by concatenating the text feature to the image feature. CoSMo (Lee122

et al., 2021) adopts the disentangled multi-modal non-local block to stabilize123

the training procedure for learning better representations. Besides, CLVC-124

Net (Wen et al., 2021) proposes a cross attention between each word in the125

sentence and each spatial location of the image feature to recognize details.126

In our work, the main idea is not to design a new attention-based compositor127

but to utilize several compositors to form as a consensus module. Without128

loss of generality, we deploy the widely-used CoSMo as the image-text com-129

positor. Moreover, we propose specific text-image compositors based on cross130

attention to better capture the relation between the reference image feature131

and the word-level text feature, which is orthogonal with existing attention-132

based models and could further improve the retrieval performance.133

Co-training. Co-training is a semi-supervised learning technique that ex-134

ploits two components to acquire complementary information on two views135

of the data (Blum and Mitchell, 1998). It has been extensively utilized in136

various research fields such as image recognition (Qiao et al., 2018), segmen-137

tation(Peng et al., 2020; Hui et al., 2023) and domain adaptation(Saito et al.,138

2018; Zheng and Yang, 2019; Luo et al., 2019). Our work adopts a co-training139

paradigm that leverages four compositors with different knowledge to jointly140

make decisions for the composed image retrieval task. The two image-text141

compositors focus on the detailed and overall changes to the reference images142

based on the perspective of finding “what to change” in the reference image,143

and the two text-image compositors are in view of the text-to-image retrieval144
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with the reference image implying “what to preserve” for the relative cap-145

tion. The compositors hold diverse knowledge from different views of the146

data. Thus, we explicitly encourage the consensus between compositors and147

leverage the consensus to rectify the single prediction.148

3. Method149
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Figure 3: Schematic illustration of the Consensus Network. Given a reference
image and a relative caption, the image encoder Fimg extracts the mid-level image
feature fm

r and high-level image feature fh
r , and the text encoder Ftext extracts

the text feature fs. Then, compositors fuse the text feature with either the mid-
level or high-level image feature. Each compositor generates distinct composed
feature. Finally, we match the composed features with the corresponding target
features and impose a KL loss between image-text compositors for training.

3.1. Overview of Consensus Network150

As illustrated in Fig. 3 (a), the Consensus Network consists of three151

components: a image encoder, a text encoder, and a consensus module.152

The image encoder, Fimg, extracts mid-level and high-level reference im-153

age features as fm
r ,fh

r = Fimg(Ir), where Ir is the reference image, and154
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fm
r ,fh

r ∈ RCin×(H×W ) are mid-level and high-level image features, respec-155

tively (i.e., output from block3 and block4 of the ResNet (He et al., 2016)).156

Cin × (H ×W ) represents the shape of the feature maps. For brevity, we do157

not distinguish between different shapes of image features. The text encoder,158

denoted as Ftext, extracts features of the relative caption as fs = Ftext(S),159

where S denotes the relative caption, fs ∈ RC′
in×L refers to the word-level160

representation, and L is the number of words of the relative caption.161

After extracting the image and text features, the consensus module trans-162

forms the reference image features with the corresponding text features into163

the composed features. It consists of four distinct compositors possessing164

different knowledge. These compositors at different depths of the image en-165

coder can be grouped into two types. Specifically, given the reference image166

feature fr and the text feature fs, the composed query ĝ can be obtained by167

either an image-text compositor or a text-image compositor. The image-text168

compositor has the residual form of ĝIT = fr + comp(fr,fs) and mainly fo-169

cuses on “what to change” for fr conditioned on the relative caption, while170

the text-image compositor has the residual form of ĝTI = fs + comp(fs,fr)171

and mainly emphasizes on “what to preserve” for fs conditioned on the ref-172

erence image. Here, comp represents a trained component to fuse fr and fs173

as the condition. Considering both the performance and computational effi-174

ciency, the text-image compositors Fm
TI and F h

TI , shown in Fig.3 (b), take the175

word-level representation fs along with the average pooled reference image176

features pool(fm
r ), pool(fh

r ) as input, respectively:177 {
ĝm
TI = Fm

TI(fs, pool(f
m
r ))

ĝh
TI = F h

TI(fs, pool(f
h
r )),

(1)

where ĝm
TI , ĝh

TI are the composed features from text-image compositors.178

Similarly, the image-text compositors Fm
IT , F

h
IT , shown in Fig. 3 (c) take the179

intermediate image feature maps, fm
r ,fh

r along with the pooled sentence-180

level text representation pool(fs) as input, which are given by:181 {
ĝm
IT = Fm

IT (f
m
r , pool(fs))

ĝh
IT = F h

IT (f
h
r , pool(fs)),

(2)

where ĝm
IT , ĝh

IT are the composed features from image-text compositors.182

The target image features fm
t ,fh

t are obtained from the same image183

encoder Fimg as the reference image features fm
r ,fh

r . Then four independent184
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projector blocks (composed of an average pooling layer and a MLP) are185

employed to acquire target features: gm
TI , g

h
TI , g

m
IT , and gh

IT . Finally, the186

four compositors are trained by pulling close the corresponding target while187

pushing away other negatives within the embedding space.188

3.2. Consensus Module189

To relieve the triplet ambiguity, we introduce the consensus module,190

which consists of four distinct compositors with different knowledge. These191

compositors have individual biases learned on noisy triplets, which are mini-192

mized at two stages. At the training stage, each compositor acquires informa-193

tion from different views of the data, and the KL loss enables them to learn194

from each other to minimize biases. At the evaluation stage, each compositor195

independently provides decisions and collaborates to rank the entire gallery196

by aggregating their decisions. We first discuss the design to ensure that197

each compositor acquires distinct knowledge, then explain how compositors198

learn from each other to reduce their biases learned on noisy triplets. The199

batch-based classification loss is as follows:200

LBBC = − log
exp(ĝ · g+)∑B
j=1 exp(ĝ · gj)

, (3)

where ĝ is the composed feature from respective compositor, and gj are201

candidates, among which the true match is g+.202

Pyramid Training for Image-Text Compositor. We develop a pyra-203

mid training paradigm for image-text compositors, which is inspired by the204

finding (Lin et al., 2017; Miech et al., 2021) that the image features of high-205

resolution are semantically weak, while the image features of low-resolution206

are semantically strong. Through exploring the different spatial information207

of the reference image, the two image-text compositors Fm
IT and F h

IT inde-208

pendently learn knowledge by leveraging the batch-based classification loss209

Lm
IT and Lh

IT . The independent batch-based classification loss makes each210

image-text compositor learn from the interactions between relative caption211

and different spatial information of the reference image, which enables these212

compositors to hold distinct knowledge from each other.213

Auxiliary knowledge from Text-Image Compositor. The text-image214

compositor is a fancy component for generating the composed feature from215

the input, which is seldom referred to in previous works. It offers additional216

knowledge due to its distinct design from the image-text compositor. As217

9



discussed in Sec. 3.1, the text-image compositor views the data from another218

perspective, mainly focusing on the text-to-image retrieval with the reference219

image implying “what to preserve” conditioned on the text information, while220

the image-text compositor finds “what to change” in the reference image. We221

use two symmetric text-image compositors at the same depths of the image222

encoder, leveraging the batch-based classification loss Lm
TI and Lh

TI .223

Collaborative Consensus Learning. The triplet ambiguity problem leads224

to noisy triplets and biases the model learning. To mitigate this problem,225

we use the Kullback Leibler divergence loss (KL loss) for two image-text226

compositors. The KL loss promotes the compositors to learn from each227

other, reducing biases and reaching a consensus. This approach balances228

the preservation of distinct knowledge and the attainment of consensus. By229

enhancing cooperation and knowledge sharing, our method is more robust to230

the triplet ambiguity problem. Specifically, we denote the resulting posterior231

probability of Fm
IT as pm and that of F h

IT as ph. We set a target probability232

pw as the weighted sum of both pm and ph, which is given by:233

pw = λ1 · pm + λ2 · ph, (4)

where λ1 and λ2 are weight coefficients, and the KL loss is formulated as:234

LKL = DKL(p
m||pw) +DKL(p

h||pw), (5)

where DKL is the KL divergence distance. The KL loss reduces the biases235

of the compositors during training, which works alongside the batch-based236

classification loss in our approach. The preliminary experiments show that237

it is not essential to incorporate extra KL loss for the two text-image com-238

positors. See Sec. 5.3 for a detaileed explanation. The final loss for training239

is the sum of the above loss functions:240

L = Lm
IT + Lh

IT + Lm
TI + Lh

TI + LKL, (6)

where Lm
IT , L

h
IT , L

m
TI , and Lh

TI are batch-based classification loss used for in-241

dependently training each image-text/text-image compositor Fm
IT , F

h
IT , F

m
TI ,242

and F h
TI . The superscript m indicates the mid-level input feature, while h243

denotes the high-level feature. The subscript IT indicates the image-text244

compositor, while the subscript TI denotes the text-image compositor.245

Joint Inference. The four distinct compositors independently learn differ-246

ent knowledge from the data triplets and enable the knowledge transfer to re-247

duce biases learned on noisy triplets. At the evaluation step, we involve each248
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compositor in decision-making to further minimize individual bias. Specifi-249

cally, we use each compositor to independently generate composed features250

and measure the similarity between any composed feature and target feature.251

The resulting similarity matrices are denoted as Pm
IT , P

h
IT , P

m
TI , P

h
TI ∈ Rn1×n2 ,252

where n1 and n2 are the number of queries and target images in the gallery.253

The final similarity matrix for ranking the gallery is the weighted sum of four254

similarity matrices from distinct compositors:255

P = α1 · Pm
IT + α2 · P h

IT + α3 · Pm
TI + α4 · P h

TI , (7)

where α1 . . . α4 are weight coefficients to balance the decisions from four com-256

positors. Note that a common practice that concatenates multiple composed257

features as one query is a special case where all αs are equal to 1.258

4. Experiments259

4.1. Experimental Setup260

Datasets. We evaluate Css-Net on three composed image retrieval datasets,261

i.e., Shoes(Berg et al., 2010), FashionIQ(Wu et al., 2021), and Fashion200k(Vo262

et al., 2019).263

• The Shoes dataset(Berg et al., 2010) is originally crawled from like.com264

for attribute discovery. It is then annotated in the form of a triplet for265

dialog-based interactive retrieval. We follow VAL (Chen et al., 2020)266

to use 10, 000 training samples and 4, 658 evaluation samples.267

• The FashionIQ dataset (Wu et al., 2021) is a language-based interactive268

fashion retrieval dataset with 77, 684 images across three categories:269

Dresses, Tops&Tees, and Shirts. It includes 18, 000 triplets from 46, 609270

training images, each containing a reference image, a target image, and271

two descriptive natural language captions. The evaluation procedure272

follows VAL (Chen et al., 2020) and CoSMo (Lee et al., 2021).273

• The Fashion200k dataset (Han et al., 2017) contains over 200k fash-274

ion images from various websites and is for attribute-based product275

retrieval. With descriptive attributes for each product, 172k images276

are used for training and 33, 480 test queries for evaluation, following277

VAL and CoSMo methods. The relative descriptions are generated278

from attributes using an online-processing pattern.279
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Figure 4: Comparison between the batch-based classification and the global-wise
classification (GWC) on the Shoes dataset. GWC significantly degrades the per-
formance since more false negative samples are involved due to triplet ambiguity.

4.2. Triplet Ambiguity Verification280

Global-wise v.s. Batch-based Optimization. To verify the negative281

impacts from the noisy triplets as shown in Fig. 2, we quantitatively com-282

pare global-wise with batch-based optimization objectives. In particular, •283

Batch-based Classification (BBC): Limited negatives in the current batch284

are involved, and • Global-wise Classification (GWC): Mining more negative285

samples in the whole training set for comparison.286

If the data triplets do NOT have ambiguity, the global-wise classification287

has the potential to be comparable or even better since it uses more negative288

samples in the training set and potentially learns a better metric, which is289

consistent with many findings in metric learning(Hermans et al., 2017; Sheng290

et al., 2020; Wang et al., 2020) and self-supervised learning (Chen et al.,291

2020; He et al., 2020). Specifically, Given a query q and features/prototypes292

{k0, k1, ...} of candidate target images, where the true match is denoted as293

k+. Two losses are given by:294

LBBC = − log
exp(q · k+))∑B
i=1 exp(q · ki))

(8)

and295

LGWC = − log
exp(q · k+))∑N
i=1 exp(q · ki))

, (9)
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Method
Dress Shirt Toptee Average

R@10 ↑ R@50 ↑ R@10 ↑ R@50 ↑ R@10 ↑ R@50 ↑ R@10 ↑ R@50 ↑

MRN(Kim et al., 2016) 12.32 32.18 15.88 34.33 18.11 36.33 15.44 34.28
FiLM (Perez et al., 2018) 14.23 33.34 15.04 34.09 17.30 37.68 15.52 35.04
TIRG (Vo et al., 2019) 14.87 34.66 18.26 37.89 19.08 39.62 17.40 37.39
VAL (Chen et al., 2020) 21.12 42.19 21.03 43.44 25.64 49.49 22.60 45.04
DCNet (Kim et al., 2021) 28.95 56.07 23.95 47.30 30.44 58.29 27.78 53.89
CoSMo* (Lee et al., 2021) 26.45 52.43 26.94 52.99 31.95 62.09 28.45 55.84
CLVC-Net† (Wen et al., 2021) 29.85 56.47 28.75 54.76 33.50 64.00 30.70 58.41
ARTEMIS (Delmas et al., 2022) 27.16 52.40 21.78 54.83 29.20 43.64 26.05 50.29
MUR(Chen et al., 2022) 30.60 57.46 31.54 58.29 37.37 68.41 33.17 61.39
CLIP4Cir (Baldrati et al., 2022) 31.73 56.02 35.77 57.02 36.46 62.77 34.65 58.60

Baseline 30.95 56.98 31.48 59.98 36.97 67.31 33.13 61.42
Css-Net 33.65 63.16 35.96 61.96 42.65 70.70 37.42 65.27

Table 1: Quantitative results on the FashionIQ dataset. The best results are in
bold. The symbol * marks an updated results by the same authors. The symbol
† indicates that this method deploys model ensemble (the same as below).

where B is the batch size, and N is the number of IDs (classes) in the training296

set. The only difference between them is that LGWC involves more negative297

counterparts, which results in high false negative rates if the triplet ambigu-298

ity does exist. We conduct experiments on the Shoes dataset (Berg et al.,299

2010) using two losses, respectively, under the same settings of CoSMo (Lee300

et al., 2021). We observe that batch-based methods outperform global-wise301

methods by a large margin, as shown in Fig. 4. The experimental results302

confirm our triplet ambiguity assumption: the training data contains many303

noisy triplets (i.e., false negative samples). Although batch-based classifica-304

tion suffers less from triplet ambiguity, the single compositor still faces some305

noisy negative triplets in the batch and produces a sub-optimal solution.306

Label Smoothing. One intuitive way we consider to alleviate the triplet307

ambiguity problem is label smoothing. The motivation is that there are308

many false negative samples due to the triplet ambiguity problem, and label309

smoothing could alleviate the overfitting to the annotated true match. In310

label smoothing, the label y = [y1, . . . yn] is not a hard one-hot label rather311

than a soft one-hot label, which is given by:312

yi =

{
1 (if i = c)

0 (if i ̸= c)
=⇒ yi =

{
1− ε (if i = c)

ε
B−1

(if i ̸= c),
(10)

where yi is the label for class i, c is the corresponding class of the query, B313
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Method
Shoes

R@1 ↑ R@10 ↑ R@50 ↑

MRN(Kim et al., 2016) 11.74 41.70 67.01
FiLM (Perez et al., 2018) 10.19 38.89 68.30
TIRG (Vo et al., 2019) 12.60 45.45 69.39
VAL (Chen et al., 2020) 16.49 49.12 73.53
CoSMo (Lee et al., 2021) 16.72 48.36 75.64
DCNet (Kim et al., 2021) - 53.82 79.33
CLVC-Net† (Wen et al., 2021) 17.64 54.39 79.47
MUR(Chen et al., 2022) 18.41 53.63 79.84
ARTEMIS (Delmas et al., 2022) 18.72 53.11 79.31

Baseline 17.27 52.26 77.35
Css-Net 20.13 56.81 81.32

Table 2: Quantitative results on the Shoes dataset. The best results are in bold.
The symbol † indicates that this method deploys model ensemble. The proposed
method has achieved competitive performances in all three metrics R@1, 10, 50.

is the batch size, and ε is a hyperparameter for label smoothing and is set314

to be 0.1. We use label smoothing for both the batch-based classification315

and the global-wise classification, which are presented in Fig. 4. The experi-316

mental results indicate that label smoothing deteriorates the performance of317

batch-based classification but enhances the performance of global-wise clas-318

sification. This is because • global-wise classification is severely affected by319

triplet ambiguity due to high false negative rate, while batch-based classifi-320

cation is affected only when noisy negative triplets are in the batch; • Label321

smoothing could relieve the triplet ambiguity but introduce another problem322

that many true negative target samples are assigned weights, which impairs323

the model training for batch-based classification. The experimental results324

also verify the effectiveness of KL loss as another form of soft label.325

4.3. The Effectiveness of Our Method326

We present the experimental results in Table 1, Table 2, and Table 3.327

We could make two observations: (1) We adopt a competitive base-328

line with few modifications. As mentioned in Sec. 4.1, we adopt the329

CoSMo as our baseline and replace the LSTM with a more robust text en-330

coder: RoBERTa, and observe consistent improvement. For example, on the331

FashionIQ dataset, our baseline improves CoSMo by 4.68% R@10 on average332

and surpasses CoSMo by 3.90% R@10 on the Shoes dataset. We infer that333
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Method
Fashion200k

R@1 ↑ R@10 ↑ R@50 ↑

MRN(Kim et al., 2016) 13.4 40.0 61.9
FiLM (Perez et al., 2018) 12.9 39.5 61.9
TIRG (Vo et al., 2019) 14.1 42.5 63.8
VAL (Chen et al., 2020) 21.2 49 68.8
DCNet (Kim et al., 2021) - 46.9 67.6
CoSMo (Lee et al., 2021) 23.3 50.4 69.3
CLVC-Net† (Wen et al., 2021) 22.6 53.0 72.2
ARTEMIS (Delmas et al., 2022) 21.5 51.1 70.5

Baseline 20.9 47.7 67.8
Css-Net 22.2 50.5 69.7
Css-Net† 23.4 52.0 72.0

Table 3: Quantitative results on the Fashion200k dataset. The best results are
in bold. The symbol † indicates that this method deploys model ensemble. The
proposed method has achieved competitive performances.

RoBERTa is more robust than LSTM(Hochreiter and Schmidhuber, 1997) to334

accurately capture the textual information. However, our baseline is slightly335

lower than the reported results of CoSMo on Fashion200k, as the authors do336

not provide sufficient implementation details for reproducing. This also lim-337

its comparing our method with CQBIR (Zhang et al., 2022), whose baseline338

uses faster RCNN(Girshick, 2015) as a different image encoder. Nevertheless,339

our method is more effective than CQBIR on FashionIQ and Shoes, where340

the triplet ambiguity problem is more serious. (2) The proposed Css-Net341

could further improve and advances the state of the art on such a342

strong baseline, verifying the effectiveness of Css-Net. For example,343

Table 1 shows Css-Net improves retrieval accuracy on all FashionIQ subsets.344

Compared to the baseline, it gains +2.70% R@10 on Dress, +4.48% R@10345

on Shirt, and +5.68% R@10 on TopTee. Compared to previous works, our346

method brings overall improvements (e.g., +2.77% R@10 and +6.67% R@50347

on average by CLIP4Cir). The improvements are significant and empirically348

validate the effectiveness of Css-Net for handling the triplet ambiguity prob-349

lem. Besides in Table 2, Css-Net surpasses the state-of-the-art (CLVC-Net)350

on the Shoes dataset, achieving improvements of +2.49% R@1 and +2.42%351

R@10, which further demonstrates that Css-Net is robust across different352

datasets. Table 3 presents Fashion200k results. Although our baseline is353
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Method
Shoes

R@1 ↑ R@10 ↑ R@50 ↑

F h
IT 17.27 52.26 77.35

F l
IT + F h

IT 18.24 52.14 78.12
F l
IT + Fm

IT + F h
IT 18.81 54.21 79.55

Fm
IT + F h

IT 19.10 54.69 79.63

Table 4: Comparison of various pyramid training methods on the Shoes dataset.
These methods are trained and evaluated independently. F l

IT , F
m
IT , and F h

IT rep-
resent the low-level, mid-level, and high-level image-text compositor, respectively.
The low-level compositor is useful, whereas the mid and high-level features show
better performance.

Lm
IT Lh

TI + Lm
TI LKL

Shoes

R@1 ↑ R@10 ↑ R@50 ↑

Baseline: (only Lh
IT ) 17.27 52.26 77.35

✓ 19.10(+1.83) 54.69(+2.43) 79.63(+2.28)
✓ ✓ 19.47(+2.20) 54.63(+2.37) 80.46(+3.11)
✓ ✓ ✓ 20.13(+2.86) 56.81(+4.55) 81.32(+3.97)

Table 5: Efficacy of model designs. Lm
IT , Lh

IT , Lm
TI , and Lh

TI are batch-based
classification loss defined in Eqn. 3, and LKL is the KL loss defined in Eqn. 5.

below the reported results of CosMo because of insufficient implementation354

details for reproduction, Css-Net brings a considerable improvement (e.g.,355

+2.8% R@10 over the baseline ) and is still competitive with many SOTA356

works especially when applying the model ensemble (e.g., +4.3% R@10).357

4.4. Diagnostic Experiments358

Pyramid Training. In Sec.3.2, we present the design of the pyramid train-359

ing, which exploits the image features from the mid-level and high-level blocks360

of the image encoder. We verify its effectiveness by comparing it with dif-361

ferent designs. Table 4 reports the experimental results. Our baseline is362

Fm
IT + F h

IT used in Css-Net. We conduct experiments on two variants for363

pyramid training: 1) F l
IT + F h

IT , which uses the image features from block2364

and block4 of the ResNet, and 2) F l
IT +Fm

IT +F h
IT , utilizing three image-text365

compositors at three depths. Both variants perform worse than Css-Net,366

e.g., −2.55% and −0.48% on the R@10 metric. However, they both surpass367
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Inference Method
Shoes

R@1 ↑ R@10 ↑ R@50 ↑

Fm
IT 15.72 51.17 78.89

F h
IT 18.35 55.15 80.52

Fm
TI 17.06 53.35 78.92

F h
TI 16.58 52.17 77.77

Joint Inference (Eq. 7) 20.13 56.81 81.32

Table 6: Effect of joint inference. We train Css-Net with four compositors on Shoes
once and separately evaluate each compositor. Joint inference refers to using the
weighting scheme (Eqn. 7) to combine decisions from all the compositors .

Total time (s) ↓ Time per query (ms) ↓ Time per target (ms) ↓

Baseline (one) 168.2 50.2 56.4
Css-Net (four) 195.8 58.5 65.7

Table 7: Inference time cost for the baseline and Css-Net. Total time refers to the
time taken to process all queries. Time per query indicates the average time spent
on each query, while time per target represents the average time used to process
each target in the gallery.

F h
IT using only one image-text compositor at block4. These results indicate368

that 1) the low-level image feature is too semantically weak to provide image369

information, and 2) groups perform better than individuals.370

Efficacy of Model Designs. Table 5 shows the effectiveness of our core371

idea, which uses four different compositors with KL loss to relieve the triplet372

ambiguity problem. We make three observations from the table. First, em-373

ploying image-text compositors at other layers of the image encoder (i.e.,374

Lm
IT ) can mitigate the triplet ambiguity problem and improve the perfor-375

mance significantly (77.35% → 79.63% at R@50 metric). This indicates that376

two image-text compositors can benefit from the interactions between the377

relative caption and different spatial information of the reference image. Sec-378

ond, adding a new compositor module, text-image compositor, to this task379

(i.e., Lm
TI + Lh

TI) can further improve the performance (79.63% → 80.46%380

at R@50 metric). This demonstrates the advantage of auxiliary knowledge.381

Third, applying an extra KL loss for two image-text compositors (LKL) can382

enhance the performance notably (80.46% → 81.32% at R@50 metric). This383

suggests that the KL loss enables two image-text compositors to share their384
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knowledge, thus minimizing the biases learned from noisy triplets.385

Effect of Joint Inference At the evaluation stage, Css-Net allows com-386

positors to jointly make the decision as introduced in Sec. 3.2. As shown in387

Table 6, joint inference surpasses single compositor and verifies our motiva-388

tion that groups perform better than individuals and could be used to reduce389

their own prediction biases mainly caused by the triplet ambiguity problem.390

Computational cost at inference Css-Net uses four compositors that391

share the same image and text encoders, thus adding minimal retrieval la-392

tency. The inference time is shown in Table 7, ranging from loading the393

model to displaying results. The experiments are conducted with GeForce394

RTX 2080 Ti, using 33, 480 queries and 29, 789 targets.395

Implementation Details. We modify CoSMo (Lee et al., 2021) as our396

baseline by replacing LSTM(Graves, 2012) with RoBERTa(Liu et al., 2019)397

as the text encoder. ResNet-50 (He et al., 2016) serves as the image encoder398

for Shoes and FashionIQ datasets, while ResNet-18 (He et al., 2016) is used399

for Fashion200k. Embedding space dimension C is 512. Text feature shape is400

C ′
in×L, with C ′

in being 768 and L is the sentence length. During training, we401

set λ1 = 10 and λ2 = 1, while evaluation uses α1 . . . α4 = 1, 0.5, 0.5, 0.5. We402

adopt the standard evaluation metric in retrieval, i.e., Recall@K, denoted as403

R@K for short. We use a random seed for each experiment and repeat it five404

times for the final results. we employ the Adam optimizer (Kingma and Ba,405

2014) with β1 = 0.9 and β2 = 0.999. On Shoes and FashionIQ, the batch406

size is set to be 32 and the base learning rates of the text encoder and other407

modules are 2e− 6 and 2e− 5, respectively. On Fashion200k, the batch size408

is set to be 128 and the base learning rates are 2e−6 and 2e−4, respectively.409

We adopt warm-up for the first 5 epochs, decay learning rate by 10 at epochs410

35 and 45 during training. The total training epoch is 50.411

5. Further Analysis and Discussion412

5.1. Further Qualitative Analysis413

Fig. 5 shows the top-10 retrieval results on three datasets: Shoes, Fash-414

ion200K, and FashionIQ. We make three key observations from these results:415

(1) Css-Net can capture the information of the reference image and the rel-416

ative caption for both coarse-grained and fine-grained queries. For example,417

the first query of Shoes and the third query of FashionIQ retrieve the cor-418

rect matches easily, and the first and second queries of FashionIQ also find419

the correct matches. These queries have clear and distinctive features that420
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is yellow

longer 
sleeves and 

is brown

are red

is black 
not brown

have black 
and grey 
plaid on the 
middle

is orange 
with black 
lettering

replace 
black with 

white

replace 
yellow with 

blue

replace 
black with 

white

Shoes

FashionIQ

Fashion200k

Composed Query Top 10 Retrieval Results Rank 1→10

Figure 5: Top-10 retrieval results on three datasets. The composed queries consist
of a reference image and a relative caption that describes the desired modification.
The blue/green boxes refer to the reference image and the true match(es).

can be matched by Css-Net. (2) The model sometimes fails to retrieve the421

correct matches due to the triplet ambiguity problem, e.g., the first query422

of Fashion200K retrieves some negative samples but are still highly related423

to the query. (3) Css-Net is less sensitive to some detailed information such424

as location. For example, the third query in Shoes retrieves a shoe that425

is visually similar but has a wrong paid location, because the dataset has426

few similar training samples. Improving the sensitivity of the model to the427

detailed information is a direction for our future work. We plan to explore428

more fine-grained features to enhance Css-Net in the future works.429
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5.2. Comparison with Most Relevant Works430

We compare our Css-Net with VAL(Chen et al., 2020) and CLVC-Net(Wen431

et al., 2021), which are most relevant to our work.432

(1) Our Css-Net differs from the hierarchical matching strategies in VAL:433

• Our Css-Net facilitates knowledge sharing between compositors at var-434

ious depths for consensus, instead of independent learning in VAL.435

• Our Css-Net observes that the low-level compositor does not contribute436

to collaborative learning and omits it to enhance the recall performance437

and efficiency (See Table 1 ).438

• Our Css-Net implements an adjustable weighted sum during evaluation,439

enabling individuals to make decisions as a group.440

(2) Our Css-Net differs from the model ensemble design in CLVC-Net:441

• Our Css-Net is more efficient since all compositors share the same en-442

coder stem (Table 7), while model ensembling in CLVCNet employs443

several independent backbones.444

• Our Css-Net encourages intra-modal and inter-modal knowledge shar-445

ing via collaborative learning between compositors, while model ensem-446

bling does not entail additional loss or learning among the models.447

• Our Css-Net acknowledges that the compositors have different knowl-448

edge and thus assign adaptive weights, while model ensembling usually449

presumes that the models are independent and equally important.450

• Our Css-Net enables single compositor to perform better could further451

benefits from model ensembling (See Table 6), while model ensembling452

does not improve single compositor prediction.453

5.3. Discussion of Collaborative Learning454

We apply a KL loss between text-image compositors in a preliminary ex-455

periment, but find that it is not as significant as the KL loss between image-456

text compositors. This is because the inputs for the text-image compositors457

are too similar, as shown in Fig. 6. Specifically, both text-image composi-458

tors receive a pooled reference image feature with identical dimensions and459

share the same text representations. Therefore, the main function of these460
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text-image compositors is to act as auxiliary decision-makers during joint in-461

ference, addressing the triplet ambiguity issue. For simplicity and efficiency,462

we do not incorporate additional KL loss for the text-image compositors.463

However, we note that the text-image compositors still play an important464

role in our framework, as they provide complementary information to the465

image-text compositors and improve the retrieval performance.466

Text-Image

Compositor

Text-Image

Compositor

pool

𝒇𝒔

𝒇𝒓
𝒉

pool

𝒇𝒔

𝒇𝒓
𝒎

ෝ𝒈𝑻𝑰
𝒉

ෝ𝒈𝑻𝑰
𝒎

(a) High-level Texi-Image Composition

(b) Mid-level Texi-Image Composition

𝐶𝑖𝑛 × 𝐻𝑊

𝐶𝑖𝑛 × 𝐻𝑊

𝐶𝑖𝑛
′ × 𝐿

𝐶𝑖𝑛
′ × 𝐿

𝐶 × 1

𝐶 × 1

𝐶 × 1

𝐶 × 1

Figure 6: A brief illustration of two text-image compositors with the input shape.
Please refer to Fig. 3 for the entire framework.

5.4. Analysis for hyperparameters467

R@1 R@10 R@50

Css-Net (α1−4 = 1, 1, 1, 1) 20.04 56.44 80.87
Css-Net (α1−4 = 1, 0.5, 0.5, 0.5) 20.13 56.81 81.32

Table 8: Ablation for hyperparameter α.

R@1 R@10 R@50

Css-Net (λ1−2 = 1, 1) 19.95 56.64 80.55
Css-Net (λ1−2 = 10, 1) 20.13 56.81 81.32

Table 9: Ablation for Hyperparameter λ.
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In this work, the hyperparameters αs and λs are not handpicked, as we468

empirically find that they are not sensitive and do not affect the model perfor-469

mance significantly. We set αs to be 1 : 0.5 : 0.5 : 0.5 based on the observation470

that the high-level image-text compositor performs best among all composi-471

tors (Table 8) and we want this compositor to act like a leader in the group.472

Similarly, we use λs = 1 for all compositors, as we have some preliminary473

experiments that show similar results with this setting (Table9). To demon-474

strate this, we add some experimental results on the Shoes dataset, which475

is another challenging benchmark for composed image retrieval. The results476

show that our Css-Net achieves competitive performance with different val-477

ues of αs and λs, indicating that our model is robust and stable to the choice478

of hyperparameters.479

480

5.5. Effect of More Annotation Noise481

In this work, we aim to relieve the issue of noisy annotations, which can482

compromise the entire training process. Further, we artificially increased the483

noise intensity during training by manually manipulating relevant captions,484

such as random deletion, random swap, and random insertion proposed in485

a NLP work (Wei and Zou, 2019). To be more specific, we conducted an486

experiment on the Shoes dataset for both the baseline and Css-Net. For each487

relative caption, there is a 50% probability of adding one of three types of488

noise: Each word in the sentence has a 50% probability of being deleted; half489

of the words in the sentence are replaced with synonyms; and new words490

are inserted into half of the word intervals. The performance of the newly491

developed baseline and Css-Net are shown in Table 10.492

Method R@1 R@10 R@50

Baseline (w noise) 16.29 50.14 75.91
Css-Net (w noise) 19.07 55.69 78.98

Baseline (w/o noise) 17.27 52.26 77.35
Css-Net (w/o noise) 20.13 56.81 81.32

Table 10: Effect of annotation noise (w/o refers to without; w refers to with).
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6. Conclusion493

We present a Consensus Network (Css-Net) for composed image retrieval.494

Css-Net aims to relieve the inherent triplet ambiguity problem, which arises495

when the dataset contains multiple false-negative candidates that match the496

same query. This problem stems from annotators describing only simple497

properties and frequently overlooking fine-grained details of the images. The498

resulting noisy triplets significantly compromise the metric learning objective499

and bias the single compositor. To this end, Css-Net employs a consensus500

module with four compositors that possess distinct knowledge. As a group,501

compositors learn mutually when training and infer collaboratively during502

evaluation, effectively minimizing the negative effects caused by the triplet503

ambiguity problem. Extensive experiments show that Css-Net has achieved504

competitive recall performance on three widely-used benchmarks, without505

substantially increasing the inference time.506
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