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Abstract— Due to the critical issues of privacy and partial
occlusion, license plate information is not always available
in vehicle recognition systems. Consequently, researchers have
increasingly turned towards vehicle re-identification (reID)
techniques to bridge the gap between cross-view camera
systems. Despite the growing interest, one major challenge
persists: the scarcity of authentic, large-scale training datasets.
To address this challenge, this paper introduces a coarse-to-fine
generation pipeline designed to synthesize high-fidelity vehicle
data, thereby facilitating subsequent vehicle representation
learning. Specifically, the proposed approach consists of three
stages: Prompt Processing, Diffusion Fine-tuning, and Seman-
tic Filtering. First, we collect detailed prompts from vehicle
websites and companies with fine-grained vehicle prototype
attributes. Next, we leverage the prior knowledge of these
automotive prototypes to fine-tune diffusion models. Finally,
to ensure the quality of the synthesized data, we employ pre-
trained vision-language models to filter out substandard images.
Building upon the high-quality data generated by this pipeline,
we validate the effectiveness using vanilla models. Extensive ex-
perimental evaluations demonstrate that our approach achieves
competitive accuracy on public benchmarks such as VeRi-776,
VehicleID and CityFlowV2, and is compatible with various
model architectures.

I. INTRODUCTION

Vehicle re-identification (reID) aims to match images of
the same vehicle across multiple cameras, which is crucial
for the deployment of autonomous vehicles [1] and intelli-
gent traffic systems [2]. Given the minor intra-class differ-
ences between car models, vehicle reID is typically treated as
a fine-grained representation learning task [3], [4]. However,
privacy concerns [5] and annotation difficulties in multi-
sensor systems [6], [7] result in a scarcity of realistic training
data. To address this issue, recent research [8], [9], [10]
has focused on generating synthetic data for vehicle reID.
Despite these efforts, generating large-scale, high-fidelity
training data that captures subtle inter-class discrepancies and
intra-class consistencies remains challenging.

Existing efforts on vehicle reID data generation can be
divided into two directions: 1) Graphics-engine-based meth-
ods, such as PAMTRI [8] and VehicleX [9]. They employ 3D
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Fig. 1: We compare our Vehicle-Diff dataset to existing
synthetic datasets. The second and third rows of datasets
are based on 3D engines (PAMTRI [8] and VehicleX [9]),
while PTGAN [11] and VehicleGAN [10] adopt the data-
driven structure, i.e., Generative Adversarial Networks [12].
We could observe that the proposed method is with a closer
visual appearance compared to the real dataset, i.e., VeRi-
776. Besides, the generated images by the proposed method
are associated with text captions, allowing for cross-modality
knowledge to guide generation.

CAD models to generate vehicle images. While these meth-
ods have made significant strides, they still face challenges.
There is a notable domain gap between rendered 3D CAD
vehicle images and actual real-world images. Additionally,
the process of generating the VehicleX dataset relies heavily
on a large amount of labeled vehicle re-identification data,
which is costly and raises privacy concerns. Similarly, syn-
thetic data from PAMTRI needs to be combined with fully
labeled re-identification datasets. 2) Data-driven methods,
such as generative adversarial networks (GANs) [12]. For
instance, PTGAN [11] and VehicleGAN [10] explore GANs
to synthesize novel vehicle views. Although these methods
generate vehicle images with relatively good visual quality,
they under-explore the cross-modality guidance and thus the
fine-grained attributes of the same vehicle are often inconsis-
tent, compromising the training process of the vehicle reID.

To address the aforementioned challenges, we propose
Vehicle-Diff, a new pipeline designed to synthesize large-



scale training data for vehicle re-identification, facilitating
the representation learning. In particular, the pipeline consists
of three primary stages: prompt processing, diffusion model
tuning, and semantic filtering. We first collect and process the
prompt for vehicles with a focus on the vehicle attribute. To
harness the pre-trained inherent knowledge of car prototypes,
we employ carefully crafted prompts. Then, we fine-tune
the diffusion model using only 1% of unlabeled target data
during the generation stage. It enables the diffusion model
to adapt to the target vehicle domain at both the content
and stylistic levels. In the subsequent filtering stage, we
apply sophisticated post-processing techniques to enhance
the semantic alignment of the generated data. Our pipeline
is scalable and adaptable to multiple downstream scenarios,
reducing labeling costs and privacy concerns. As shown in
Fig. 1, the generated vehicle images are much closer to the
real-world data. Finally, we construct a new labeled vehi-
cle re-identification dataset, called Vehicle-Diff, comprising
149,472 images of 4,940 distinct vehicles. The efficacy of
Vehicle-Diff is substantiated through comparative evaluations
with synthetic datasets produced by existing approaches. In
summary, our paper makes the following contributions:

• A new coarse-to-fine cross-modality generation pipeline
by prompting the diffusion model to craft a synthetic
vehicle re-identification dataset tailored to a downstream
scene, with only about 1% unlabeled images in the
original dataset. To the best of our knowledge, our work
is among the early attempts for large-scale training data
generation with attributes for vehicle re-identification.

• Extensive experiments have validated that our pipeline
can minimize the gap between synthetic and real
data, facilitating the subsequential reID model learning.
The proposed method has achieved competitive perfor-
mance, e.g., 83.79% mAP on the VeRi-776 dataset.

II. RELATED WORK

Vehicle Re-Identification. Vehicle re-identification (reID)
involves retrieving vehicles of interest from a database of
images collected by traffic cameras. Previous studies [13],
[14], [15], [16] have achieved significant success using
supervised learning. However, this approach faces challenges
such as high annotation costs and privacy concerns when
collecting and labeling data. To mitigate these issues, some
works [17], [18] have explored unsupervised learning to
reduce annotation requirements. Despite these efforts, sub-
stantial real data is still needed for general vehicle reID
tasks [16], and attribute annotations remain preferable [19],
[20]. In contrast, we propose a multi-modality data synthesis
approach that significantly reduces the need for both real data
and annotations, addressing these limitations effectively.
Synthetic Datasets for Vehicle Re-Identification Task.
Synthetic data are increasingly used to address privacy con-
cerns and high annotation costs in creating re-identification
datasets [21], [22]. Previous works [8], [9], [23], [24],
[25] have employed 3D engines to generate characters and
vehicles, but these assets suffer from the intrinsic domain gap
between virtual and real scenes and are time-consuming to

create. VehicleGAN [10] and PTGAN [11] deploy GANs for
data augmentation, with VehicleGAN focusing on AutoRe-
construction and pose consistency, and PTGAN generating
novel vehicle views based on given poses. However, these
methods still require large labeled datasets for effective
training and are constrained by the quality and patterns of the
original data. In contrast, our multi-modality data synthesis
approach reduces the need for both real data and annotations,
addressing these limitations effectively.
Text-to-image Diffusion Models. Diffusion models [26],
[27] have recently emerged as promising generative models,
particularly for text-to-image generation, where they can
produce images based on textual descriptions. Recent ad-
vancements such as Stable Diffusion [28], Stable Diffusion
XL [29], and Midjourney [30] have demonstrated remarkable
results in this domain. Leveraging the power of these models,
methods like [31], [32], [33] have utilized diffusion models,
e.g., GLIDE [34], to generate synthetic data for image clas-
sification. Despite their impressive visual outcomes and ap-
plications, the potential of text-to-image diffusion models for
vehicle re-identification remains underexplored. In this paper,
we evaluate multiple state-of-the-art text-to-image models
and identify the optimal model for enhancing downstream
vehicle re-identification performance.

III. METHOD

An overview of Vehicle-Diff is provided in Fig. 2. Vehicle-
Diff generates high-fidelity data in a coarse-to-fine manner
to enhance reID network training, comprising three stages:
(1) prompt processing, (2) diffusion fine-tuning, and (3)
semantic filtering. First, the prompt processing stage (§III-
A) constructs a prompt library and specifies vehicle attributes
such as models and colors for image generation. Next, during
the diffusion fine-tuning stage (§III-B), Vehicle-Diff fine-
tunes the diffusion model using unlabeled vehicle images,
improving its adaptation to vehicle image generation. Finally,
in the semantic filtering stage (§III-C), Vehicle-Diff generates
vehicle images with different IDs using the prompt library
and fine-tuned model, followed by filtering these images
through off-the-shelf detection and cross-modality alignment.

A. Prompt Processing

The prompt processing stage aims to construct discrimina-
tive vehicle attribute prompts to guide image generation, thus
enhancing inter-class consistency and intra-class diversity.
We first filter the noisy online information to collect vehicle
attributes, i.e., brand, production year, and body style, for
different car models from an online car information web-
site 1. It is worth noting that color is an important attribute,
and we will use it again in the third stage for semantic
filtering. Moreover, inspired by alternating optimization [38]
and human-diffusion interaction [39], [40], [41], we also
develop a prompt template to improve the quality of the
generated images. Specifically, we adjusted one component
of the prompt template based on feedback from the diffusion

1https://www.autoevolution.com/
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Fig. 2: An overview of our coarse-to-fine cross-modality pipeline Vehicle-Diff. It has three stages: Prompt Processing,
Diffusion Fine-tuning, and Semantic Filtering. (1) We first scrape and filter vehicle model information from online vehicle
websites. Given the diffusion model, we then select the prompt template according to the visual quality. (2) In the second
stage, we leverage the off-the-shelf image captioner to generate the pseudo caption. It is worth noting that the proposed
pipeline only requests a few unlabeled real images from the downstream dataset. After the data preparation, we fine-tune
the diffusion model via Mean Squared Error (MSE) loss. (3) In the third stage, using the refined prompts, we choose the
most effective diffusion model by comparing visual quality, such as consistency. Then, we create synthetic data for the
vehicle re-identification task. We use the cross-modality model to filter out semantically misaligned data. Finally, we feed
the high-fidelity data to train the reID model via cross-entropy loss [35], [36] and circle loss [37].

model. The final prompt template is designed as “a [color]
[production year] [brand] [car model] [body style] driving
down the road.” In the bottom of Fig. 1, we show several
examples of the prompt template and the resulting images.

B. Diffusion Fine-tuning

Vehicle-Diff leverages a text-to-image diffusion model
to generate vehicle images according to prompts. How-
ever, a pre-trained diffusion model still struggles to adapt
well to the real-world vehicle images, resulting in a do-
main gap between synthesized images and those in vehicle
reID datasets. Therefore, we further fine-tune the diffusion
model to mitigate the domain discrepancy while retaining
its generation capability. As shown in Fig. 2 (Stage 2), we
illustrate the step-by-step fine-tuning stage from the data
preparation to the model optimization. To be specific, we
first deploy an image captioner, i.e., BLIP-2 [42], to predict
text prompts for unlabeled vehicle images, and then employ

the generated image-text pairs to fine-tune the text-to-image
diffusion model. We incorporate additional weights [43] in
the decoder part, while keeping the pre-trained weights
unchanged. Therefore, the additional weights could adapt the
final visual style, while maintaining the generative capability.
The optimization objective is the mean squared error (MSE)
loss. It is worth noting that, our Vehicle-Diff could be trained
with only a few (1%) unlabeled images of the vehicle
dataset for fine-tuning, i.e., 378 images for VeRi-776 and
527 images for CityFlowV2, while previous methods either
require large-scale datasets (GAN-based methods [10], [11])
or rely on labeled images (graphics-engine-based methods
[8], [9]). Moreover, different from these methods, Vehicle-
Diff harnesses the generative power of diffusion models,
enabling to generate more realistic images, as shown in
Fig. 1. Similarly, we fine-tune multiple candidate diffusion
models in preparation for the next stage, which involves



selecting the optimal diffusion model.

C. Semantic Filtering

We first sample approximately 10 prompts from the opti-
mized prompt library to evaluate and select the optimal fine-
tuned diffusion model. With a similar idea to our prompt
template design, the selection of the fine-tuned model is
informed by a qualitative assessment of the images generated
by each candidate model. Fig. 2 (Stage 3) provides illustra-
tive examples of fine-tuned models evaluated alongside the
corresponding generated imagery. Through this evaluation,
we opt for the fine-tuned diffusion model that maintains the
text encoder in a frozen state. We then feed our designed
prompts into the optimal fine-tuned diffusion model, which
generates synthetic images automatically. Because of the lim-
itations of text-to-image generation models in producing fine-
grained and controllable outputs, directly using generated
images is insufficient for training vehicle re-identification
networks due to the following two major challenges, i.e.,
multiple objects and semantic misalignment. We only need
portions of the images that include the high-quality vehicle.
Diffusion models can generate low-quality images, such as
those with multiple vehicles, fragmented vehicles, or no
vehicle at all. To tackle this issue, we utilize the YOLOv5x6
detection model [44], trained on high-resolution 1280×1280
images, for vehicle detection and cropping. The model is
configured to detect only vehicle categories, with a single
bounding box per image prioritizing the most prominent
vehicle. We retain images with high-confidence detections
and discard vehicles smaller than or equal to 250 pixels
in height or width. After cropping, we have the vehicle in
the center of the image, and we further screen out noisy
images with semantic misalignment, such as vehicles with
incorrect colors. In particular, we employ a cross-modal
vision-language model, i.e., CLIP [45], to extract the feature
for both text and image modalities. We then remove semantic
misaligned images that match wrong colors. Specifically,
the test prompts are constructed as phrases, e.g., “a red
vehicle,” where the color term is dynamically substituted
from a predefined color list, such as “red,” “yellow,” “green,”
“white,” and “black.” The cosine similarity between image
and test text in the feature level is:

simk =
fI · fTk

∥fI∥∥fTk
∥
. (1)

The predicted color k̂ is identified as: k̂ = argmaxk(simk).
We then compare the predicted color to the expected color,
which is specified within the prompt used to generate the
image. If the predicted color matches the expected color, the
image is preserved; otherwise, it is discarded.

D. ReID Learning

In this paper, we do not pursue the network structure,
but focus on the data aspect. Our generated data is com-
patible with different networks, and we are free to the reID
model selection. Here, we take the typical transformer, Swin-
V2 [46], as an example (please see the bottom of Fig. 2).

Dataset #IDs #Img #Cam Attr

Real

StanfordCars [50] 196 16,185 N/A ✓
PKU-Vehicle [51] N/A 10,000,000 N/A ✗
CompCar [52] 4,701 136,726 N/A ✗
PKU-VD1 [53] 1,232 1,097,649 1 ✓
PKU-VD2 [53] 1,112 807,260 1 ✓
VehicleID [54] 26,328 222,629 2 ✗
VehicleReID [55] N/A 47,123 2 ✗
VeRi-776 [56] 776 49,357 20 ✓
CityFlow [57] 666 56,277 40 ✗
CityFlowV2 [58] 440 52,717 46 ✗
VRIC [59] 5,622 60,430 60 ✗

Synthetic
PAMTRI [8] 402 41,000 Varied ✓

VehicleX [9] 1,362 75,516† Varied ✓

Vehicle-Diff 4,896 149,472‡ Varied ✓

TABLE I: Statistic comparisons with public real-world and
synthetic vehicle re-ID datasets in terms of the number of
vehicle IDs, images, and viewpoints, and the availability of
attributes. †: Number of images in their code. ‡: Given more
text prompts, we could generate more images.

We follow the existing works [47], [48] to add an auxiliary
classifier to facilitate the backward gradients, especially for
the large-scale dataset. To optimize the network, we adopt
the classification loss [35], [36] and the circle loss [37] as
Ltotal = Lce + Lcircle, where Lce is the cross-entropy loss
to classify different vehicles, and the Lcircle is to optimize
the representation space by pulling closer positive images,
while pushing away the negative samples. We apply the same
loss terms to both the primary and auxiliary classifiers. It is
worth noting that our synthetic data can be combined with
real-world data to improve performance even further.

IV. EXPERIMENT

A. Implementation Details

Synthetic data generation. The Diffusion Fine-tuning pro-
cess uses the Adam optimizer [49], with a learning rate of
0.0001 at the start and a polynomial scheduler for scheduling.
We train the diffusion model for 100 epochs, with the first 20
serving as a warm-up. During inference, we set the guidance
scale to 8, and the diffusion step to 50. The output size is
set to 1024× 1024. The vehicle detection threshold is set to
0.65. Our generation pipeline, Vehicle-Diff, yields 149,472
images of 4,940 vehicles on VeRi-776.
ReID baseline training. Following the setting of existing
works [8], [9], we mainly study a CNN-based model, i.e.,
Res50 [36], and a transformer model, i.e., SwinV2 [46].

B. Comparison with the State-of-the-art

In Tab. I, we show the statistics of dataset generated by
our Vehicle-Diff and other existing vehicle re-ID datasets. We
observe that our pipeline could synthesize more high-fidelity
images with more identities, i.e., 4 times larger number of
IDs compared with VehicleX [9]. It is worth noting that our
proposed Vehicle-Diff could further generate more images,
if more text prompts are provided. In Tab. II, Tab. III
and Tab. IV, we compare our proposed Vehicle-Diff with
existing vehicle re-ID methods on three real-world datasets,
i.e., VeRi-776 [56], VehicleID [54] and CityFlowV2 [58],
respectively. For a fair comparison, we follow the setting in



Fine-grained differences between 
front grilles and rear lights

Fine-grained differences between body 
styles: The top ones are couples, while the 
bottom ones are convertibles

Fine-grained differences between 
body styles: The top ones are sedans, 
while the bottom ones are wagons

(a) Inter-class Discrepancy.

Prompt: A red 2019 DODGE 
Charger SRT Hellcat 
Widebodydriving down the road

Prompt: A yellow 2017 
VOLKSWAGEN Golf VII GTE 
Hatchback driving down the road

Prompt: A green 2015 
MERCEDES BENZ GLE W166 
SUV driving down the road

(b) Intra-class Variance.
Fig. 3: Our pipeline reflects the fine-grained discrepancy between two appearance-similar vehicles, e.g., front grilles, rear
lights, and body types, while we also depict reasonable intra-class variations of the same vehicle, such as vehicle pose.

Method Backbone Data Mix Rank-1 Rank-5 mAP
VehicleX [9] Res50 S - 51.25 67.70 21.29
Vehicle-Diff Res50 S - 57.87 74.97 22.21
VehicleX [9] SwinV2-B S - 66.87 79.80 28.33
Vehicle-Diff SwinV2-B S - 74.14 84.45 34.73
VANet [60] Res50 R - 89.78 95.99 66.34
AAVER [61] Res101 R - 90.17 94.34 66.35
baseline (IDE [36]) Res50 R - 92.73 96.78 66.54
VehicleX [9] Res50 R+S D 93.44 97.26 70.62
Vehicle-Diff Res50 R+S D 94.52 97.97 71.50
PAMTRI [8] Dense121 R+S D 92.86 96.97 71.88
SAN [62] Res50 R - 93.30 - 72.50
VehicleGAN [10] Res50 R+S D 93.60 97.30 74.20
CAL [63] Res50 R - 95.40 97.90 74.30
MSDeep [15] Res50 R - 95.10 - 74.50
VehicleX (PCB) [9] Res50 R+S D 94.34 97.91 74.51
Vehicle-Diff (PCB) Res50 R+S D 94.40 97.56 75.45
baseline SwinV2-B R - 96.72 98.57 77.99
Vanilla Diffusion [29] SwinV2-B R+S B 96.31 98.39 78.92
CLIP-ReID [64] ViT-B/16 R - 95.70 - 79.30
DCAL [65] ViT-B/16 R - 96.90 - 80.20
GiT [66] GiT R - 96.86 - 80.34
TransReID [14] ViT-B/16 R - 96.90 - 80.60
PCL-CLIP [67] ViT-B/16 R - 97.10 98.60 82.50
CLIP-ReID [64] ViT-B/16 R - 97.40 - 83.30
VehicleX [9] SwinV2-B R+S D 97.32 98.69 80.36
Vehicle-Diff SwinV2-B R+S D 97.38 98.51 80.98
VehicleX [9] SwinV2-B R+S B 97.08 98.81 81.39
Vehicle-Diff SwinV2-B R+S B 97.68 98.93 83.79

TABLE II: Comparisons with the state-of-the-art methods on
VeRi-776 [56]. “S” and “R” denote synthetic and real data,
respectively. “B” indicates that each training batch selects
equal amounts of synthetic and real data (as introduced
in § III-D), whereas “D” indicates that synthetic and real
data are combined randomly. Results on two backbones, i.e.,
Res50 and SwinV2-B, are both reported.

the existing work [9] and utilize the same number synthetic
image during the reID model training. As shown in Tab. II,
Vehicle-Diff enables to achieve competitive vehicle re-ID ac-
curacy on VeRi-776. This indicates that our proposed coarse-
to-fine generation pipeline adapts well to vehicle re-ID,
and enables to generate high-fidelity training images, even
through our generative diffusion model is fine-tuned only
with 1% of the unlabeled training data. Specifically, when the
reID model is trained solely on synthetic data, our approach
improves mAP by 0.92% compared with VehicleX on VeRi-
776. When the reID backbone is switched to SwinV2-Base,
we observe a consistent mAP improvement, i.e., +6.40%.
Furthermore, combined with the original real-world training
set, our generated dataset can further improve the reID
performance. In particular, our approach achieves 0.94%
and 3.57% improvements in mAP compared with VehicleX
and PAMTRI, respectively, when jointly trained with the
original VeRi-776 training set in Res50 backbone [73]. For
SwinV2-Base reID backbone, our method shows a consistent

Method Backbone Data Mix Small Medium Large
Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP

VehicleX [9] Res50 S - 30.54 48.39 39.20 26.93 42.76 34.64 23.46 38.07 30.73
Vehicle-Diff Res50 S - 40.84 59.99 49.78 36.63 55.72 45.50 31.72 50.14 40.45
VehicleX [9] SwinV2-B S - 42.44 60.85 46.86 39.77 57.19 43.89 36.96 54.18 41.00
Vehicle-Diff SwinV2-B S - 50.41 64.90 53.87 46.83 63.46 50.64 42.91 59.98 46.89
RAM [68] VGGM [69] R - 75.20 91.50 - 72.30 87.00 - 67.70 84.50 -
AAVER [61] Res101 R - 74.69 93.82 - 68.62 89.95 - 63.54 85.64 -
GSTE [51] VGGM R - 75.90 84.20 75.40 74.80 83.60 74.30 74.00 82.70 72.40
IDE [36] Res50 R - 77.35 90.28 83.10 75.24 87.45 80.73 72.78 85.56 78.51
PRN [70] Res50 R - 78.40 92.30 - 75.00 83.00 - 74.20 86.40 -
SAN [62] Res50 R - 79.70 94.30 - 78.40 91.30 - 75.60 88.30 -
SAVER [71] Res50 R - 79.90 95.20 - 77.60 91.10 - 75.30 88.30 -
MSDeep [15] Res50 R - 81.20 95.40 84.30 78.00 91.80 81.00 75.60 89.30 78.60
CFVMNet [72] Res50 R - 81.40 94.10 - 77.30 90.40 - 74.70 88.70 -
VehicleX [9] Res50 R+S D 81.50 94.85 87.33 77.62 92.20 83.88 74.87 89.90 81.35
CAL [63] Res50 R - 82.50 94.70 87.80 78.20 91.00 83.80 75.10 88.50 80.90
VehicleGAN [10] Res50 R+S D 83.50 96.50 - 78.20 93.20 - 75.70 90.60 -
Vehicle-Diff Res50 R+S D 83.87 96.11 89.23 78.60 94.21 85.23 75.93 91.40 82.62
baseline SwinV2-B R - 81.80 96.01 84.79 79.12 91.70 81.84 77.68 90.34 80.43
TransReID [14] ViT-B/16 R - 83.60 97.10 - - - - - - -
VehicleX [9] SwinV2-B R+S B 82.12 96.29 85.18 78.91 91.74 81.71 77.78 90.71 80.58
Vehicle-Diff SwinV2-B R+S B 82.73 96.75 85.72 79.54 92.43 82.29 78.02 90.95 80.82
VehicleX [9] SwinV2-B R+S D 83.75 97.10 86.64 80.16 93.40 83.03 79.27 91.68 82.00
Vehicle-Diff SwinV2-B R+S D 84.37 97.52 87.17 80.55 93.92 83.47 79.42 92.29 82.22

TABLE III: Comparisons with the state-of-the-art methods
on VehicleID [54].

Method Data CityFlowV2 CityFlowV2→VeRi-776
Rank-1 Rank-5 Rank-10 Rank-1 Rank-5 Rank-10

VehicleX [9] S 22.21 28.83 35.09 62.04 76.16 81.59
Vehicle-Diff S 26.38 33.09 36.54 66.81 77.18 83.61

TABLE IV: Comparisons with competitive VehicleX [9] on
CityFlowV2 [58] only using synthetic data.

improvement. In VeRi-776 dataset, Vehicle-Diff ourperforms
VehicleX by 0.62% on mAP when using random combina-
tion strategy (“D” in Tab. II) and 2.4% on mAP when using
balanced sampling combination strategy (“B” in Tab. II).
Notably, Vehicle-Diff achieves a 0.6% increase in Rank-
1 accuracy over VehicleX, whose Rank-1 is already high
at 97.08%. This increase is non-trivial. Besides, compared
with other state-of-the-art methods, Vehicle-Diff also shows
competitive performances. Our Vehicle-Diff method achieves
97.68% Rank-1 and 83.79% mAP, which surpasses CLIP-
ReID [64] of 97.40% Rank-1 and 83.30% mAP. Similarly, for
the VehicleID dataset, Vehicle-Diff shows competitive perfor-
mance in Tab. III. In CityFlowV2, Vehicle-Diff outperforms
VehicleX by 4.17% on Rank-1 and 4.26% on Rank-5 (see
the left section of Tab. IV). We further conduct experiments
to evaluate the generalization capability of Vehicle-Diff. As
shown in the right section of Tab. IV, we apply the reID
model trained on synthesized source-domain data to assess
performance on the target domain. Notably, only images
from CityFlowV2 were used for fine-tuning the generative
model, without any label information. Despite this, Vehicle-
Diff consistently outperforms VehicleX.

We further evaluate the quality of the generated data
through both quantitative and qualitative evaluation. For the
quantitative assessment, we utilize the Frechet Inception
Distance (FID) [74], a widely recognized evaluation metric.
Unfortunately, since the PAMTRI dataset is not publicly
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Fig. 4: Qualitative retrieval results. Here we compare our
method with both our baseline and VehicleX. The ranking
list is presented in descending order from left to right based
on the similarity score. The images in red boxes are false-
matched, whereas the green ones are true-matched.

Method FID↓
VeRi-776 CityFlowV2

VehicleGAN [10] 233.0 -
PTGAN [11] 231.1 -
VehicleX 88.20 77.87
Vehicle-Diff 44.84 54.84

TABLE V: Quantitative comparisons on generated data qual-
ity. For a fair comparison, both Vehicle-Diff and VehicleX
are trained on 1% images of VeRi-776.

available, we are unable to calculate its FID score. To ensure
a fair comparison, we randomly selected 1% of the training
datasets to train VehicleX and generate sample images. As
shown in Tab. V, Vehicle-Diff achieves a lower FID score
compared to all other generative methods. For qualitative
comparison, we visualize the sample outputs of competitive
generative methods in Fig. 1. The images in the first row
are from the real-world dataset, while the images in the
remaining five rows are from different synthetic data pipeline
based on both 3D engines and GAN. We could observe that
Vehicle-Diff produces images that are visually closer to the
real-world dataset while keeping the fine-grained texture.

C. Ablation Studies and Further Discussion

Effectiveness of the coarse-to-fine strategy. Here, we
evaluate the effectiveness of each component in our coarse-
to-fine generation pipeline. Although the filtering process has
minimal impact on visual quality and the Fréchet Inception
Distance (FID) change after fine-tuning is negligible, the
reID model performance shows consistent improvement (see
Tab. VI). Tab. VI validates that quality matters more than
quantity, and Tab. VII shows that more high-quality data
leads to better results.
Effectiveness of the balanced sampling strategy. Previous
methods, such as VehicleX and PAMTRI, typically conduct
random sampling on mixed real and synthetic data to train
the model. As a by-product of our pipeline, we introduce
a balanced sampling strategy. We merge two mini-batch
samples from real and synthetic datasets as a new mini-batch
for training. We find that our balanced sampling strategy
improves model learning on both VehicleX and Vehicle-Diff
data. As shown in the last four rows of Tab. II, compared to
the vanilla sampling strategy, our balanced sampling strategy
yields a +1.06% boost in mAP for VehicleX and +2.81%
boost in mAP for Vehicle-Diff.
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Fig. 5: Synthetic data provides notable mAP improvements,
especially when the amount of real training data is small.

Components #IDs #Imgs Rank-1 mAP FIDDFT SF
5,305 191,720 33.19 8.26 126.24

✓ 4,940 160,758 58.34 22.00 44.35
✓ ✓ 4,896 149,472 58.76 22.33 44.78

TABLE VI: Ablation study on components, i.e., diffusion
fine-tuning (DFT) and semantic filtering (SF).

Baseline #IDs #imgs Rank-1 Rank-5 mAP

IDE 4,894 45,338 57.87 74.97 22.21
4,896 149,472 58.76 74.43 22.33

TABLE VII: Ablation study on the number of synthetic
images for training the reID model on the IDE baseline.

Retrieval visualization. As shown in Fig. 4, we conduct
the qualitative image retrieval comparison on VeRi-776. Our
method has successfully recalled the target vehicle in the
top-5 of the ranking list, surpassing the same model trained
on real data or VehicleX. It is because that our Vehicle-Diff
contains a large number of vehicle images with fine-grained
attributes and intra-class variances such as camera angle,
facilitating the discriminative feature learning (see Fig. 3).
Therefore, the model trained on our Vehicle-Diff is able to
handle challenging matches with fine-grained differences and
significant camera angle variations.
Limited real data? To evaluate the effectiveness of Vehicle-
Diff under limited real data conditions, we systematically
reduce the amount of real data used. Specifically, we train
the baseline using 1%, 10%, 50%, and 100% of the VeRi-
776 dataset, each mixed with our synthetic data (see Fig. 5).
The results show that synthetic data significantly enhance
representation learning, particularly when real data is scarce.

V. CONCLUSION

In this paper, we study the state-of-the-art text-to-image
synthetic data for vehicle re-identification (reID). We in-
troduce Vehicle-Diff, a novel coarse-to-fine cross-modality
generation pipeline that creates a synthetic reID dataset using
only 1% of unlabeled images from the original dataset,
tailored to specific downstream tasks. Extensive experiments
show that our pipeline significantly reduces the gap between
synthetic and real-world data, thereby enhancing reID per-
formance. Specifically, our method achieves a competitive
83.79% mAP on VeRi-776. Furthermore, we analyze the
strengths and limitations of synthetic data across various
settings and identify optimal strategies for its use. In the
future, we plan to integrate 3D-aware framework [75] into
our pipeline to further improve the data quality.
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