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Abstract. In this paper, we delve into Blind Image Decomposition
(BID) tailored for real-world scenarios, aiming to uniformly recover im-
ages from diverse, unknown weather combinations and intensities. Our
investigation uncovers one inherent gap between the controlled lab set-
tings and the complex real-world environments. In particular, existing
BID methods and datasets usually overlook the physical property that
adverse weather varies with scene depth rather than a uniform depth,
thus constraining their efficiency on real-world photos. To address this
limitation, we design an end-to-end Depth-aware Blind Network, namely
DeBNet, to explicitly learn the depth-aware transmissivity maps, and
further predict the depth-guided noise residual to jointly produce the re-
stored output. Moreover, we employ neural architecture search to adap-
tively find optimal architectures within our specified search space, consid-
ering significant shape and structure differences between multiple degra-
dations. To verify the effectiveness, we further introduce two new BID
datasets, namely BID-CityScapes and BID-GTAV, which simulate depth-
aware degradations on real-world and synthetic outdoor images, respec-
tively. Extensive experiments on both existing and proposed benchmarks
show the superiority of our method over state-of-the-art approaches.

Keywords: Image decomposition · Scene depth · Weather recovery

1 Introduction

Image restoration against adverse weather remains a classical yet challenging
task for many real-world applications, e.g ., auto-driving car, with increasing de-
mands on safety and robustness. Traditional methods usually focus on specific
pre-defined weather conditions, such as image deraining [10, 22, 48, 55], dehaz-
ing [17, 24, 45, 66], desnowing [3, 4, 35], low-light enhancement [14, 19, 29, 37],
adherent raindrop removal [41, 44, 62], etc. In an attempt to increase model
scalability, researchers further propose all-in-one networks [2, 32, 58, 63, 64] to
universally handle different degradations with multiple model ensembles. How-
ever, this line of methods requires extra individual training for each specific
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Fig. 1: Example images in two proposed depth-aware datasets (left: BID-CityScapes
(real-world), right: BID-GTAV (synthesized)). Different from existing datasets, we
explicitly involve depth into the simulation process. For instance, rain exists in different
formats such as rain streak and raindrop. Rain streak usually appears in the remote
area, while raindrops are closer to the camera. Similarly, we also consider snow, haze
and dark illumination, which often co-occur during rain. When testing, BID setting
demands the model to handle images with an arbitrary combination of multiple adverse
weathers, which is challenging yet more overarching.

weather task. Considering efficiency, some researchers resort to a unified archi-
tecture [5,26,31,50,57]. Such an approach can handle a single type of corruption
at one time, but still suffers from multiple adverse weather combinations. In
nature, adverse weather conditions tend to occur simultaneously in a random
combination, e.g ., rain usually comes with fog and dim lighting. Therefore, in
this work, we study Blind Image Decomposition (BID) task [15,51], which takes
a step closer to real-world practice. BID considers the corrupted images as an
arbitrary combination of degradation layers and separates the superimposed im-
age into constituent underlying images in a blind setting, i.e., both the source
components involved in mixing as well as the mixing mechanism are unknown.

Existing methods and datasets for BID [15, 51] have achieved competitive
performance in the public academic datasets, but usually ignored an inherent
property that adverse weather varies with scene depth instead of a uniform
depth, limiting the scalability to real-world cases. For instance, objects closer
to the camera are mainly affected by the rain streaks with more light reflected
into the camera, while objects far away are affected more heavily by the fog and
the low-light condition. There remain two problems: (1) How to leverage the
depth? Despite a few works [18, 47] have discussed degradation modeling com-
bined with depth information, they are still limited to specific weather conditions
and fail to work under the BID setting. (2) The scarcity of adverse weather data
with depth. The lack of depth-aware BID datasets comprising different weather
combinations, intensities and their corresponding ground truth also impedes de-
composition algorithm development, which is closer to real-world applications.

To address these two limitations, we propose a new depth-aware network,
dubbed DeBNet and two large-scale datasets, i.e., BID-CityScapes and BID-
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GTAV. (1) In particular, DeBNet simultaneously restores arbitrary hybrid ad-
verse weather conditions in a generic framework. DeBNet is an end-to-end net-
work encapsulating the underlying physics principles behind the formation of
depth-aware BID. Specifically, DeBNet takes the corrupted image as inputs,
predicts a depth map, and then produces a clean image as the output. Con-
sidering the features of different weathers usually do not share the same char-
acteristics, we further resort to a Neural Architecture Search (NAS) method
to achieve the optimal accuracy-efficiency trade-offs. Specifically, we design a
specific BID search space that consists of several effective fundamental restora-
tion operations, such as multi-scale convolutions [49] and self-attention mod-
ules [65]. (2) Meanwhile, in order to enable depth-aware BID training, we first
construct a BID dataset in real-world autonomous driving scenes based on the
CityScape [6] dataset, dubbed BID-CityScapes, including five types of ad-
verse weather mixed under BID setting, as well as their corresponding depth
maps and clean images. Moreover, to enrich the diversity and enable DeBNet
to generalize well on real-world images with random viewpoints, we further gen-
erate a high-resolution synthetic dataset using a commercial video game Grand
Theft Auto (GTAV) [46], called BID-GTAV. Examples of the two datasets are
illustrated in Fig. 1. Unlike existing methods that are limited to type-specific
or depth-independent degradation modeling, we analyze the physical proper-
ties of weather degradations and formulate a depth-aware BID setting including
five different weather conditions: rain streak, fog, raindrop, snow and low-light
degradation. Our contributions are as follows:

– What is the remaining gap between lab and real-world images
against adverse weather? We identify one overlooked practical problem
between the depth property and the corrupted observation, and introduce a
new Depth-aware Blind Network, named DeBNet, to explore the inherent
depth prior of multiple adverse weathers. The key idea underpinning the
network design follows the reverse process to disentangle the noise with the
aid of depth prediction. In particular, we leverage the neural architecture
search to adaptively find the optimal architecture for processing depth and
visual features in an end-to-end manner.

– To verify the effectiveness of the proposed method, we introduce two new
BID datasets, called BID-CityScapes and BID-GTAV. To our knowledge,
the datasets are the first two depth-aware BID datasets including different
types of degradations captured across various scenes and viewpoints. Exten-
sive experiments on two proposed BID benchmarks substantiate that our
learned model achieves competitive PSNR and SSIM scores, and is scalable
to other existing image restoration benchmarks, including SPAdata [56], De-
Raindrop [41], SOTS [25], Snow100K [36], SICE [1] and RainDS [43].

2 Related Work

Blind Image Decomposition. Aiming at the adverse weather removal task,
several restoration works [9,33,41,60] have achieved satisfactory results on var-
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ious degradations. However, these methods still require individual training for
each type of degradation, impeding the real-world all-in-one implementation.
Based on blind source separation problem [13, 23], Han et al . first propose the
“Blind Image Decomposition” (BID) [15], regarding rain and other real-world
weather corruptions as superimposing and separable to a clean image. Wang et
al . further introduce a two-stage BID learning paradigm [51] to utilize a pre-
trained masked autoencoder (MAE) [16] for efficient fine-tuning on the restora-
tion network. However, these BID methods remain heavily dependent on tedious
multi-scale multi-head reconstruction or time-consuming pertaining, and neglect
the inherent depth-related physical properties of weather degradations. In com-
parison, our end-to-end method explicitly leverages the depth prior for a better
understanding of the corrupted image against adverse weathers.
Neural Architecture Search (NAS). Neural Architecture Search [21,34,40,
67] automates the designing of neural network architectures for optimal perfor-
mance while minimizing human hours and efforts. For instance, Li et al . first
applies NAS to all-in-one weather removal task [31], while Gou et al . further
propose an efficient search space [12] with three task-flexible modules. Quan et
al . introduce a two-stage searching and training strategy [43] for the joint re-
moval of raindrops and rain streaks. Yet these methods all tend to search the
combinations of each individual operation for specific degradations, which are
not suitable for the BID problem. Our work is closely related to [7, 31, 34] to
further formulate the searching task into an end-to-end optimization problem.
Different from previous methods, we adopt a unified multi-branch search space to
explore the weightings of different operations, considering the inherent patterns
of varying feature interference among multiple weathers.

3 Method

3.1 Problem Formulation

Existing methods are usually type-specified and ignore the scene depth during
weather formulation. In this paper, we first propose a uniform BID imaging
model inherited with depth annotations. Without loss of generality, the degraded
image Inoisy can be formulated as a composition of a clean background Iclean and
multiple weather degradation layers, including raindrop (RD), snowflakes (SN),
lighting (L), rain streak (RS), and fog (A). The formulation can be written as:

Inoisy =

Depth−variant︷ ︸︸ ︷
L︸︷︷︸

Lighting

⊙[Iclean(1 − RS − A)︸ ︷︷ ︸
Transparency

+ RS + A0A︸ ︷︷ ︸
Scene Occlusion

]⊙
Depth−invariant︷ ︸︸ ︷

(1 − Mrd ⊙ Msn)︸ ︷︷ ︸
Non−occluded Area

+ RD + SN︸ ︷︷ ︸
Lens Occlusion

.

(1)
where ⊙ denotes the element-wise multiplication. From left to right, L ∈ [0, 1]
represents the illumination intensity. RS ∈ [0, 1], A ∈ [0, 1] are single-channel
soft masks for rain streak and fog with a larger value indicating a higher weather
intensity (lower transparency). A0 is the atmospheric light intensity [47]. Mrd ∈
{0, 1} and Msn ∈ {0, 1} denote the masks of raindrop and snow area, which
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Fig. 2: The architecture of our Depth-aware Blind image decomposition Network
(DeBNet). Given the corrupted image Inoisy with adverse weather, we extract the vi-
sual features via a searchable multi-branch encoder Enc (See Sec. 3.3 and Fig. 3). Then
two decoder branches (Sec. 3.2) are deployed to progressively upsample the feature
map with skip-connected features from the encoder. In particular, the transmittance
decoder branch Dect is to predict the scene depth D. The noise branch Decn combines
the learned attention weights with reconstructed high-resolution features. As shown
in (a), we apply Depth-aware Bipolar Attention (DBA) module to compare the depth
and the input image as the transmissivity map T . Besides, we also adopt an Efficient
Channel Attention (ECA) module to fuse the depth and visual features to produce the
depth-guided noise residual N as shown in (b). Finally, we fuse T , N , and Inoisy for
joint restoration following Eq. (3).

are usually transparent to some extent. RD is the visual occlusion brought by
adherent raindrops on lens, representing the blurred imagery reflected by the
environment. Similarly, SN represents snowflakes on lens, which totally occlude
the scene. It is worth noting that the scene area is usually depth-variant, while
the occlusion on lens is depth-invariant. Therefore, for the first term, we should
involve the depth prior, and not consider depth for the occlusion on lens. In
particular, for rain streak & fog: we follow the formulation [18] to simulate
the observation changes according to the depth; for low-light, we follow existing
low-light image enhancement works [8, 28] to regard inverted low-lighted inputs
as haze images. We also introduce depth information into low-light modeling,
which aligns with human intuition that the farther the distance, the heavier
the fog, and the weaker the illumination. for raindrop & snow: we follow the
degradation in [36, 41], to split occlusion as two different types, i.e., scene and
lens. More details on the degradation modeling are given in the suppl.

Considering the multiplication and addition operation in Eq. (1), we can
simplify it as follows:

Inoisy = WIclean + b, (2)

where W and b denote the multiplicative and additive factors, respectively. Both
factors are partially related to the scene depth. Our depth-aware BID task is a
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reverse prediction task, and thus can be formulated as:

Igen = TInoisy +N, (3)

where the Transmittance map T = W−1 and the Noise map N = −W−1b.
In general, T denotes the positional and intensity information (e.g ., the density
of rain and fog), while N tends to characterize the intrinsic information of the
degradation itself (e.g ., blurry or obstruction effects of the raindrops). As shown
in Fig. 2, this paper leverages the deep neural network to predict the value of T
and N . Different from previous methods that directly learn an additive and non-
convex degradation residual [18,43], our method explicitly separates the learning
of transmittance and noise factors, which is more conducive for feature learning
under multiple overlapping weather conditions.

3.2 Depth-aware BID Network

Depth-aware Transmittance Map. As shown in the bottom branch of Fig. 2,
the transmittance decoder Dect predicts the scene depth with direct supervision.
Following [18], we calculate the depth reconstruction loss, which is the L2 dis-
tance between the predicted depth values Dgen and ground truth depth Dgt:

Ldepth = ∥Dgen −Dgt∥2 , (4)

where Dgen and Dgt are normalized into [0, 1] with size of a quarter of the input
image. To further utilize the learned depth, we propose a Depth-aware Bipolar
Attention (DBA) module to produce the transmittance map, i.e., T in Eq. (3).
Considering that different weather conditions lead to particular pixel enhance-
ment (e.g ., fog, rain) or attenuation (e.g ., low light), we adopt a continuous
bipolar mask between [−1, 1] for the transmittance map T , indicating both con-
textual information and coarse weather types underlying the images. As shown
in Fig. 2 (a), the proposed DBA module takes both downsampled input image
and depth map as inputs, containing two cascaded convolution blocks followed
by an attention block [59] to emphasize the spatial information. Finally, we apply
tanh function to normalize features and generate the transmittance map T .
Depth-guided Noise Residual. According to Eq. (3), the additive noise map
N is also related to the scene depth D, thus we further introduce the noise
decoder branch Decn to generate the final high-resolution feature map Fh, and
then combine it with the learned transmittance features F t from transmittance
branch to produce the noise map N .

Similar to [18], we consider the output of the last convolutional block in
the DBA module as a set of un-normalized attention weights, representing the
complete transmittance features. In general, each weight F t

i (i = 1, 2, ..., c) cor-
responds to a certain type of weather degradation after softmax. We divide the
features Fh into c groups as Fh

i (i = 1, 2, ..., c), where c is the channel number
of our transmittance features F t (c = 32 in this work). Then, we re-weight each
submap Fh

i through an element-wise multiplication with F t
i to produce the final

noise map. After the multiplication, we further perform group convolutions [61]
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in c groups to individually refine the features of different types of degradation.
Since the channel number of a weather condition varies under different combi-
nations, we further adopt an efficient channel attention mechanism (ECA) [54]
with the adaptive kernel size k as | log2(C)+1

2 |odd, where C is the channel number
of the input features. |t|odd indicates the nearest odd number of t. As shown
in Fig. 2 (b), ECA can adaptively learn a local cross-channel interaction, thus
improving the robustness against different hybrid weather conditions. Finally,
we merge all the features from different groups using a 1×1 convolution to pro-
duce the noise residual N , with which we combine the transmittance map T to
produce the restored clean image Igen following Eq. (3). The reconstruction loss
on the restored image can be written as:

Lrgb = ∥Igen − Igt∥2 , (5)

where Igen is the restored image and Igt denotes the ground truth.
Conditional Adversarial Training. To mimic the distributions of the clean
image Igt, we first introduce a discriminator Dis to distinguish whether the input
image is real or generated. Our source adversarial loss Ls is written as:

Ls = E [log (1−Dis (Igen))] + E [logDis (Igt)] , (6)

where Dis(I) predicts the possibility that the image I is uncorrupted. For this
discriminator, we hope Dis(Igt) = 1 and Dis(Igen) = 0, so we maximize the Ls.
Meanwhile, we also deploy a degradation classifier Cls to classify the weather
combinations from the restored image. The multi-class conditional loss Lc can
be defined as:

Lc = −
N−1∑
i=0

log (1− Cls(Igen)i) , (7)

where N denotes the number of degenerate types, Cls(I)i denote the possibil-
ity that the image I suffer from degeneration type i. In this paper, we select
five common weather types, e.g ., rainstreak, raindrop, snow, fog and low-light
condition. It is worth noting that we have multiple combined weather during
training. Therefore, we apply 5-dimensional multi-class vectors to indicate the
combined weather type. The weather type is not fixed but randomly generated
during training. The overall loss function Lgen for DeBNet is formulated as:

Lgen = Ldepth + Lrgb + λsLs + Lc, (8)

here we empirically set λs = 0.1 to balance the relative weight of Ls.

3.3 Multi-branch Architecture Search

Multi-branch feature connection is a potential solution for the BID task [53],
since image restoration is a classical position-sensitive vision problem requiring
precise spatial information and rich semantics. To adaptively restore images
with various weather combinations, we adopt a multi-branch search method [7]
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Fig. 3: Illustration of the multi-branch feature search, which contains three-stage of
alternated Interaction Module IM and Refinement Module RM . In this work, we
deploy the multi-branch learning after a standard 3×3 convolution layer to decrease
the resolution by half. Each black line represents a standard search block, and the red
line denotes a reduction search block for downsampling. Taking the second stage IM2,
RM2 as an example, IM2 generates an extra branch from the previous lowest-resolution
branch by a reduction searching block (red line), while RM2 further refine the features
using cascaded standard search blocks (black line) within the same resolution.

to explore the optimal architecture for various weather combinations. Different
from simply utilizing Neural Architecture Search (NAS) to select features from
different encoders [31, 43], we deeply involve NAS to extract depth and visual
features from different convolution kernels and the transformer branch in an
efficient way, considering different types of weather correspond to varying sizes
of receptive field. In this way, we introduce a channel/token-wise fine-grained
search strategy embedded in a multi-branch high-resolution feature space.
Search Space. Our multi-branch search space is embedded in the encoder
Enc. Specifically, the network consists of two modules: the refinement mod-
ule RM and the interaction module IM , as shown in Fig. 3. Each module is
composed of several search blocks operating at different resolutions. We alter-
nate between using two modules to construct a multi-branch search space. The
interaction module IMi(i = 1, 2, 3, ..., n) achieves high-to-low resolution feature
transformation to maintain more semantic details, while the refinement mod-
ule RMi(i = 1, 2, 3, ..., n) obtains larger receptive fields and multi-scale features
by stacking searching blocks in each branch. Finally, multi-branch features are
resized and concatenated together, connected to the double-branch decoder.
Search Block. Unlike previous NAS-based restoration methods [31,43] that are
designed for specific tasks, we aim to customize the network for various weather
combinations. Our searching block contains two paths: a MixConv [49] path
for multi-scale feature extraction, and a lightweight Transformer [7] to provide
more global contexts in a residual manner. Instead of selecting different sizes or
stacking order of the single-scale convolution kernels, Mix-Conv divides all chan-
nels into groups and applies multi-scale convolution kernels to each group in a
depth-wise complementary way, which can extract features with different recep-
tive field sizes. The number of convolutional channels and the number of tokens
in the Transformer are searchable parameters as channels in depth-wise convo-
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lutions are independent in the searching block [7, 38], any convolution channels
or transformer queries can be easily removed without affecting the other search
blocks. More details on the search block are given in the suppl.
Search Algorithm. Following Darts [34], we use the importance factors which
are learned jointly with the network weights of each search block. We also adopt
a resource-aware L1 penalty [7] to push the importance factors of high compu-
tational costs to zero. More details on the resource-aware penalty can be found
in the suppl. Combing with this resource-aware penalty term Ll1 with an at-
tenuation coefficient λ set as 0.01, the overall training loss is:

Ltotal = Lgen + λLℓ1. (9)

4 Datasets

BID-CityScapes. There are several large-scale synthetic datasets [15, 18, 30]
available for training restoring networks. However, none of them considers depth
effects under the BID setting, thus impeding the performance for real-world
images. To enable the depth supervision for DeBNet, we introduce a new depth-
aware BID dataset named BID-CityScapes, using images from CityScapes [6]
dataset as background. We first generate synthetic degradation layers based on
the provided camera parameters and scene depth. We apply the rendering strat-
egy in [18, 47] to smooth the degradation layers, and then generate the final
corrupted images according to Eq. (1). Altogether, our BID-CityScapes dataset
has 6,000 training image pairs and 800 pairs for testing. Each pair contains a
clean background image, a depth map from the original dataset, and 14 types
of different weather combinations (see Fig. 1 left), including different types and
intensities. Although BID-CityScapes dataset has effectively expanded the prac-
ticality for BID tasks, its imaging perspective is restricted to autonomous driving
scenes, which limits the generalization on real-world photos with various imaging
scenes and viewpoints. More details and examples are given in the suppl.
BID-GTAV. We further propose the BID-GTAV dataset with more diverse
scenes as a supplement (see Fig. 1 right). The dataset is rendered from Grand
Theft Auto V (GTAV) [46], an open-world game with large-scale city models. We
capture the images and corresponding ground-truth depth maps from the game
with two plugins, Script Hook V and Script Hook V.NET [20]. We endeavor
to leverage the rich virtual worlds created for major video games to simulate
real-world scenarios with high-level fidelity and various viewpoints. We extract
8,000 pairs of images for training and 1,000 pairs for testing. The extracted pairs
contain various weather conditions using graphics debugging mods, as well as
their clear counterparts and precise depth maps.

5 Experiment

5.1 Implementation Details

Our model is trained in an end-to-end manner following [31,34]. The training set
is split into a search training part Set1 (70%) and a search validation part Set2
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Table 1: Quantitative results on our synthetic BID-CityScapes and BID-GTAV
datasets. We evaluate the performance in Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity (SSIM) under 5 BID cases, which are (1) heavy rain + heavy fog,
(2) light rain + light fog + snow, (3) medium rain + medium fog + raindrop, (4) light
rain + light fog + light dark, (5) light rain + light fog + light dark + raindrop. The
best performance under each case is marked in bold.

case

BID-CityScapes BID-GTAV

TransWeather BIDeN CPNet DeBNet TransWeather BIDeN CPNet DeBNet

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

(1) 23.07 0.845 25.70 0.869 26.97 0.902 29.51 0.916 18.45 0.623 19.55 0.699 22.30 0.725 23.88 0.751

(2) 24.33 0.877 26.05 0.880 27.18 0.904 29.72 0.920 18.88 0.631 19.80 0.720 22.57 0.731 24.31 0.763

(3) 24.20 0.865 25.61 0.867 27.05 0.901 29.54 0.917 18.42 0.622 19.61 0.700 22.31 0.727 24.05 0.757

(4) 22.39 0.801 25.11 0.861 25.87 0.869 28.35 0.909 18.33 0.619 18.78 0.643 20.90 0.713 23.02 0.744

(5) 22.10 0.792 24.07 0.849 25.44 0.857 28.18 0.907 18.01 0.609 18.51 0.631 20.67 0.701 22.71 0.737

Fig. 4: Qualitative comparisons on BID-CityScapes and BID-GTAV under several
mixed cases. DeBNet produces clean and precise restored images without visible arti-
facts or color shifts, especially for depth-related scenarios. Please zoom in to see details.

(30%). We simultaneously optimize the architecture parameters on Set1 and the
network parameters on Set2. Each search block contains two operating paths.
For the MixConv path, we set the expansion rate as 4. In the reduction block,
we set the stride of the depthwise convolution as 2. For the Transformer path,
we set s = 8. The number of attention heads is 1, and the hidden dimension
of the attended subspaces is set as 64. We resize the features into half size of
the former resolution during inverse projection in Transformer to achieve down-
sampling. We progressively remove the search units with less importance [34]
and re-calibrate the running statistics of BN layers after every 5 epochs. After
the architecture search, DeBNet can fully explore global and local information
across different weather degradations and restore clean images. Besides, since
the network training and architecture search are conducted in a unified end-
to-end manner, the resulting network can be used directly without fine-tuning.
More implementation details are given in the suppl. Code will be released in
https://github.com/Oli-iver/Depth-BID.

5.2 Synthetic BID Analysis

Instead of directly combining existing single-degradation datasets [31], we fur-
ther propose two depth-aware BID datasets, BID-CityScapes and BID-GTAV,
across various scenes and viewpoints by incorporating depth information during
simulation. We conduct extensive experiments on the proposed two datasets to
evaluate the performance of the proposed DeBNet and the existing state-of-the-
art BID methods BIDeN [15] and CPNet [51], as well as an all-in-one method

https://github.com/Oli-iver/Depth-BID
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Table 2: Quantitative results for benchmarking the proposed DeBNet and the state-of-
the-art methods on real-world deraining SPAdata [56] and dehazing SOTS-outdoor [25]
test sets. The original pre-trained weights of all these models are directly used for
evaluation. We have also trained these methods on our BID-CityScapes (red) and
BID-GTAV (blue) datasets. Results of the two-stage refined DeBNet+ are marked in
green. The best performance is marked in bold.

Method
SPAdata [56] SOTS-outdoor [25]

RCDNet [52] AirNet [27] DeBNet FFA-Net [42] AirNet [27] DeBNet

PSNR 34.08/36.72/34.1134.05/35.32/34.4036.69/34.78/36.7733.07/34.60/31.25 33.09/34.51/31.10 33.50/31.57/33.82

SSIM 0.953/0.969/0.9580.948/0.963/0.9600.965/0.954/0.973 0.980/0.982/0.975 0.979/0.983/0.9680.986/0.982/0.989

Fig. 5: Visualization of the learned Transmittance map T and Noise map N on different
weather scenarios. T and N are re-normalized into [0, 1] for better visualization.

TransWeather [50]. We select five common weather combinations existing in the
real world for evaluation as: (1) heavy rain + heavy fog, (2) light rain + light
fog + snow, (3) medium rain + medium fog + raindrop, (4) light rain + light
fog + light dark, (5) light rain + light fog + light dark + raindrop. All the
methods are trained and evaluated under the same settings for fair comparisons.
The quantitative results on the two proposed synthetic datasets are reported in
Table 1. It can be found that our DeBNet delivers state-of-the-art performance
under the BID setting on both datasets. Notably, our method performs favorably
against other counterparts under the scenes where, e.g ., DeBNet exceeds CPNet
by 2.54dB on PSNR under heavy rain and fog combinations. This phenomenon
can be attributed to the explicit utilization of scene depth in DeBNet, which
encourages the model to leverage spatial information while extracting features.
We also show some qualitative comparisons in Fig. 4. Due to the page limitation,
more analyses and comparisons on synthetic datasets are given in the suppl.

5.3 Real-world BID Analysis

To validate the effectiveness of our approach, we further conducted experiments
on real-world images. As existing real-world datasets are limited with single-
type degradation and lack the ground-truth scene depth, we directly evaluated
the generalization ability of models trained respectively on BID-CityScapes and
BID-GTAV datasets with real-world test sets [25,56]. To further validate the ef-
fectiveness of our BID-GTAV dataset constructed for multi-view natural image
restoration, we further prepared a two-stage learned model (DeBNet+) which
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is first trained on the BID-CityScapes dataset, and then fine-tune the searched
model on the BID-GTAV dataset. Table 2 shows the quantitative results of
different restoration tasks. It can be found that though the performance of
DeBNet is constrained by the BID training setting, our method remains com-
petitive (DeBNeta) or even better performance (DeBNet+) against other task-
specific counterparts. This experiment also indicates the quality of our proposed
datasets, as the depth-aware modeling method effectively improves the general-
ization ability on real-world images. More results on other real-world restoration
tasks can be found in the suppl.

5.4 Discussion and Ablation Study

Map visualization. To validate the effectiveness of our proposed depth-aware
BID modeling approach, we visualized the learned transmittance map T and
noise map N under real-world scenarios. As shown in Fig. 5, both T and N
are highly spatially related to the scene depth. (1). In highly depth-related
scenes like low-light and fog, the transmittance map T tends to capture low-
frequency patterns while the noise map N focuses on high-frequency details,
e.g ., small points. (2). For raindrops and snow scenes, it is challenging to distin-
guish transmittance and noise maps from a frequency perspective, as the chaotic
distribution of such noise constitutes low-frequency interference.
Depth branch. The design of the depth branch is motivated by two points: (1)

Fig. 6: Predicted depths on real images.

The off-the-shelf depth models are not
robust to complicated weather, due to
various occlusions and illumination.
Therefore, we decide to re-train the
depth estimation task from scratch.
(2) Combining with the depth esti-
mation is complementary to our main
task, i.e., image decomposition, since
the low-level feature of depth tasks
focuses on the distance and object
edges. As shown in Fig. 6, we further
select real images from KITTI dataset [11] under autonomous driving scenar-
ios, and randomly generate outputs using the modeling method as Eq. (3) for
the scene depth D visualization. It can be found that our method can not only
achieve ideal BID restoration but also predict reasonable scene depths.
Comparisons with diffusion-based method. We also provide comparisons
with another diffusion-based method WeatherDiff [39] in Table 3a. We retrained
the official model from scratch on our proposed dataset and tested it on two
real-world datasets. It can be observed that, benefiting from the depth guidance
and NAS targeted at various degradation combinations, our method DeBNet
clearly outperforms the compared method, particularly in real-world datasets
and complex scenarios.
Datasets. To further validate the effectiveness, we conduct experiments on three
real-world datasets [1, 36, 41]. As shown from Table 3b, we could observe two
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Table 3: More experiment results on different settings. The best performance is marked
in bold. case-1: heavy rain + heavy fog, case-2: light rain + light fog + snow, case-5:
light rain + light fog + light dark + raindrop. (a) Comparison with the diffusion-
based method in terms of PSNR and SSIM. (b) More experiment results on different
training datasets in terms of PSNR and SSIM. ft DeBNet means the model is pre-
trained on target dataset / previous BIDeN / BID-CityScapes and fine-tuned on the
training set of each evaluated dataset. (c) Ablation on DBA and ECA modules with
BID-CityScapes dataset in terms of PSNR and SSIM. (d) Ablation on hyperparameters
with BID-CityScapes dataset in terms of PSNR and number of parameters.

(a)

Methods
BID-CityScapes SPAdata [56] SOTS-outdoor [25]

case-1 case-5 real-world rain real-world haze

TransWeather [50] 23.07/0.845 22.10/0.792 33.75/0.942 29.89/0.959

WeatherDiff [39] 28.11/0.910 25.07/0.887 35.32/0.955 33.17/0.979

DeBNet 29.51/0.916 28.18/0.907 36.69/0.965 33.50/0.986

(b)

Variants Pre-training Dataset Deraindrop [41] Snow100k-M [36] SICE [1]

DeBNet1 BIDeN dataset [15] 29.75/0.931 31.15/0.933 20.03/0.719

DeBNet2 BID-CityScapes 32.79/0.942 33.80/0.948 21.79/0.730

ft DeBNet from scratch 33.05/0.942 33.99/0.953 22.10/0.738

ft DeBNet1 BIDeN dataset 32.89/0.941 33.75/0.942 22.03/0.735

ft DeBNet2 BID-CityScapes 33.11/0.945 33.96/0.953 22.12/0.738

(c)

Ablation w/o DBA w/o ECA DeBNet (full)

case-1 28.87 / 0.906 29.23 / 0.911 29.51 / 0.916

case-5 27.50 / 0.868 27.95 / 0.882 28.18 / 0.907

(d)

Variants case-2 case-5

NAS Ll1

Uformer [58] 25.64 (50.90M) 22.05 (50.90M)

λ = 0.05 26.82 (30.55M) 24.91 (35.23M)

λ = 0.005 29.73 (44.73M) 28.19 (47.53M)

w/o NAS 29.79 (53.15M) 27.88 (53.15M)

GAN Ls

λs = 0.05 29.70 (39.08M) 28.20 (42.50M)

λs = 0.5 29.68 (38.95M) 28.05 (43.11M)

DeBNet (λ = 0.01, λs = 0.1) 29.72 (39.15M) 28.18 (42.37M)

points. (1). Since existing BID dataset [15] does not consider the impact of depth
on weather imaging, there is a notable performance loss with DeBNet1. In con-
trast, DeBNet2 trained on our dataset generalizes well to real-world images, indi-
cating our dataset’s efficacy in prompting depth-related feature learning which
is vital for real-world applications. (2). Pre-training on our dataset and fine-
tuning on downstream datasets also yields better performance and shows scal-
ability to different real-world scenarios. For instance, ft DeBNet2 pretrained on
our dataset surpassed the performance of models pretrained on existing datasets
or from scratch, which is also evidenced in Table 2.
DBA and ECA modules. In our modeling with Eq. (1) and Eq. (3), the
transmittance map primarily characterizes the location and density information
of adverse weather conditions, which are intimately associated with depth. Thus
we design a bipolar transmittance mechanism in DBA to fully exploit the learned
depth features. Moreover, DBA further embeds diverse weather characteristics
into the reconstructed image features through the ECA module. To understand
the contributions of these two attention modules, we respectively replace the
DBA and ECA modules into 1× 1 convolution to build two variants. The quan-
titative results in Table 3c show that the absence of these two attention modules
in linking depth information with image restoration leads to a significant decline
in performance, particularly in complex composite scenes. In conclusion, high-
quality BID requires spatial attention (DBA) to capture common features (e.g .,
scene depth), as well as channel attention (ECA) to enhance distinctive features
of different degradations.
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Fig. 7: Visualization of the searched architectures under different scenarios. For sim-
plicity, we only show the averaged searching proportions in refinement modules when
the feature size is scaled to 1/8 (see Fig. 3). More visualizations are given in the suppl.

Hyperparameters. 1. NAS Ll1 . In practice, we can obtain different searched
models using different λ values. As shown in Table 3d, we observe two points:
(1) We usually could yield a small-size NAS model. Our model (λ=0.05) easily
achieves a better PSNR than a raw end-to-end Uformer [58] with much fewer pa-
rameters. (2) For the simple scenes case-2, the proposed model (λ=0.005) could
achieve a competitive performance compared with a bigger baseline model w/o
NAS, while achieving a significant PSNR improvement in a challenging weather
combination (case-5). Our DeBNet achieves a favorable trade-off between per-
formance and efficiency. 2. GAN Loss Ls. We also conduct experiments on
the hyperparameter λs of the source adversarial loss, it can be found that our
trained model is not sensitive to the GAN loss weight λs.
Architecture search. Our multi-branch feature search aims to find the best
structure to comprehensively handle BID in various weather combinations. To
verify the role of different operations in our search space, we further use a fixed
combination dataset for the search. As shown in Fig. 7, our method exhibits
adaptability, finding dynamic architectures for different weather degradations.
As for local weather degradations (e.g ., raindrop and snow), the model tends
to favor smaller convolutional kernels. In comparison, for globally corrupted
weather types (e.g ., haze and low-light), the model prefers utilizing larger-sized
convolutions and attention mechanisms to achieve a broader receptive field.

6 Conclusion

In this paper, we explore the visual effects of various adverse weather conditions
subject to scene depth and formulate a depth-aware BID imaging model. Con-
sidering the depth information within images, we propose a novel BID model,
namely DeBNet, to restore arbitrary hybrid adverse weather conditions in a uni-
fied framework. Taking advantage of neural architecture search and the specifi-
cally designed restoring search space, we achieved an effective deraining network
to remove various types of rain. To bridge the domain gap between real and syn-
thetic images, we present two depth-aware BID datasets BID-CityScapes and
BID-GTAV under real-world and synthetic scenes, respectively. Extensive ex-
periments on our benchmarks and other real-world datasets demonstrate the
effectiveness and superiority of our unified network. We hope that our dataset
would take a step closer for transferring the research of blind image decomposi-
tion to real-world applications.
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