
3D Magic Mirror: Clothing Reconstruction from a Single Image
via a Causal Perspective

Zhedong Zheng1 Jiayin Zhu1 Wei Ji1 Yi Yang2 Tat-Seng Chua1
1Sea-NExT Joint Lab, National University of Singapore 2 Zhejiang University

Abstract

This research aims to study a self-supervised 3D clothing
reconstruction method, which recovers the geometry shape
and texture of human clothing from a single image. Com-
pared with existing methods, we observe that three primary
challenges remain: (1) 3D ground-truth meshes of clothing
are usually inaccessible due to annotation difficulties and
time costs; (2) Conventional template-based methods are
limited to modeling non-rigid objects, e.g., handbags and
dresses, which are common in fashion images; (3) The in-
herent ambiguity compromises the model training, such as
the dilemma between a large shape with a remote camera
or a small shape with a close camera.

In an attempt to address the above limitations, we pro-
pose a causality-aware self-supervised learning method to
adaptively reconstruct 3D non-rigid objects from 2D im-
ages without 3D annotations. In particular, to solve the in-
herent ambiguity among four implicit variables, i.e., cam-
era position, shape, texture, and illumination, we introduce
an explainable structural causal map (SCM) to build our
model. The proposed model structure follows the spirit
of the causal map, which explicitly considers the prior
template in the camera estimation and shape prediction.
When optimization, the causality intervention tool, i.e., two
expectation-maximization loops, is deeply embedded in our
algorithm to (1) disentangle four encoders and (2) facili-
tate the prior template. Extensive experiments on two 2D
fashion benchmarks (ATR and Market-HQ) show that the
proposed method could yield high-fidelity 3D reconstruc-
tion. Furthermore, we also verify the scalability of the pro-
posed method on a fine-grained bird dataset, i.e., CUB. The
code is available at https://github.com/layumi/
3D-Magic-Mirror.

1. Introduction

Nowadays, people can purchase clothing via online
shopping sites, e.g., Amazon and eBay. However, there re-
mains a gap between the display images and the real prod-
uct quality [7, 32]. In an attempt to minimize such a visu-
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Figure 1: Motivation. Here we compare the proposed approach
with prevailing template-based methods, i.e., HMR [19] and
ROMP [55] on a fashion dataset ATR [28]. We re-implement and
visualize results with the color mapping according to the projected
location. The first row is the front view, and the second row is the
3D mesh rotated with 45◦. The template-based model can cap-
ture the human poses but miss non-rigid objectives, such as hairs,
handbags, and dresses.

alization gap, we study the 3D clothing reconstruction from
a single image. Given a 2D clothing image and the fore-
ground mask, we intend to reconstruct a 3D mesh, which
recovers the geometry shape and texture of the target cloth-
ing. Besides, the clothing reconstruction can also be applied
to many computer vision applications, including virtual re-
ality [53], interactive system [47, 52] and 3D printing [4].

However, there remain three challenges. First, 3D an-
notations are difficult to obtain due to the annotation diffi-
culty and time costs. There are no public large-scale 3D
clothing mesh datasets for supervised learning. In con-
trast, the availability of the large-scale 2D fashion datasets,
such as ATR [28] and Market-HQ [79], makes training data-
hungry deep-learned approaches become feasible. The suc-
cess has been proved in the 2D pedestrian image genera-
tion [8, 11, 36, 45, 51]. With the recent development in self-
supervised learning and deep-learned models, one straight-
forward idea is raised whether we can leverage 2D data for
3D reconstruction, even without manual 3D annotations.
Second, existing works [19, 29, 30] typically focus on hu-
man pose estimation and body reconstruction via paramet-
ric models, e.g., a morphable body template [34]. How-
ever, pre-defined body parameters usually are not scalable
to non-rigid clothing, e.g., dresses, handbags, and loose
clothing [16, 69], losing fine-grained clothing details. As
shown in Figure 1, we re-implement two prevailing meth-
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Figure 2: Explanation of the Collider Connection. Here we show a
common example “Dating with Beautiful Girl” [43] in (a), which
is similar to our simplified dilemma on two variants, i.e., shape
and camera pose in (b). Since we study an inverse problem, we
also draw (c) and (d). We note that there is a compensation ef-
fect when we estimate the posterior probability. As shown in (d),
given the observed foreground shape, the model needs to estimate
the posterior 3D shape and posterior camera pose. There are two
possible alternatives for the network to learn, i.e., a big shape from
a long distance or a small shape from a short distance. Therefore,
it makes the model difficult to converge an answer.

ods, i.e., HMR [19] and ROMP [55], which both success-
fully capture the human pose but miss the cloth shape. In
contrast, our methods leverage a deformable model to fur-
ther facilitate learning non-rigid objects. Third, one scien-
tific question still remains in single image 3D reconstruc-
tion. The primary implicit variables for reconstruction are
camera viewpoint, shape, texture, and illumination. Ide-
ally, these four factors are independent. However, it remains
challenging to disentangle the implicit variables in practice.
One typical dilemma is the ambiguity between the camera
and shape [26]. Given a 2D image, it is hard to decide the
object size. There are two possible answers (see Figure 2).
One large object is far from the camera or one small object
is close to the camera. Despite different physical sizes, the
two objects have the same projection size in photos.

In an attempt to overcome the above-mentioned chal-
lenges, this paper proposes a self-supervised learning ap-
proach to adaptively reconstruct 3D clothing from a single
image without 3D mesh annotation. We study the existing
works (see Figure 3) and introduce an explainable struc-
tural causal map (SCM) to build our model and guide the
optimization strategy. (1) Following the spirit of the causal
map, we deploy four independent 3D attribute encoders and
a differentiable render for reconstruction. The encoders are
to extract 3D attributes from 2D images and foreground
masks, including camera viewpoint, geometric shape, tex-
ture, and illumination. Then the attributes are fed to the
differentiable render to reconstruct the 3D mesh. Differ-
ent from existing works [17,26], we explicitly introduce the
prior template to help the camera estimation and shape off-
sets estimation, which is aligned with human observation.
If we foreknow the human prototype, it helps us to predict
the camera position as well as the intra-class variant (such
as leg movement). (2) We leverage the causality interven-
tion tool, i.e., two expectation-maximization loops, to help

Table 1: Comparison with existing methods on supervisions. The
proposed method harnesses relatively weak supervision for 3D re-
construction from a single image. It is also worth noting that some
works take 2D input images with white background as inputs, and
we also view this line of works deploying the foreground mask.

Methods Viewpoint Semantic Manual Part Foreground
Annotations Keypoint Template Seg. Mask

VPL [21] ✓ ✓
CMR [20]† ∗ (✓) ✓ (✓) ✓
CSM [24] ✓ ✓
DIB-R [6] ✓ ✓
IMR [60]∗ (✓) ✓
ACMR-vid [25] ✓ ✓
UMR [26] ✓ ✓
WLDO [3] ✓ ✓ ✓
Texformer [70] ✓ ✓ ✓
MeshInversion [77] ✓
SMR [17] ✓
Ours ✓
∗: The method deploys the manual template for initialization;
†: The viewpoint annotation is optional.

learn the prototype, and disentangle encoders from the con-
fusing loss punishment. To summarize, our contributions
are two-fold:

• We identify the three challenging problems in the 3D
clothing reconstruction: 1) No 3D annotations; 2)
Non-rigid objects; 3) Reconstruction ambiguity. In an
attempt to solve these challenges, we propose a self-
supervised learning method with a causality design to
reconstruct the 3D clothing mesh from large-scale 2D
image datasets. Following the spirit of the causal map,
we re-design the encoder structure and leverage the
“intervention” tool, i.e., two expectation-maximization
loops, to facilitate the 3D attribute encoder learning.

• Experiments on two fashion datasets verify the ef-
fectiveness of the proposed method quantitatively and
qualitatively. Furthermore, experiments on the fine-
grained bird dataset also show that the proposed
method has good scalability to other non-rigid objects.

2. Related Work
3D Reconstruction from Single Image. Humans can es-
timate 3D structures from a single image. Many works de-
ploy a parameter-based template [19, 30, 55], which is ro-
bust but also limits the representative ability to non-rigid ob-
jects. To enable more degrees of freedom, Deephuman [82]
adopts a U-Net model to reconstruct the human body and
clothing voxel, but dense depths and ground-truth 3D an-
notations are needed. To reduce the dependency on 3D
annotations, PrGANs [10] trains a generative adversarial
network (GAN) to generate the 3D voxel from lots of 2D
images with different viewpoints. Tulsiani et al. [61] fur-
ther leverage multi-view photos of the identical object to
reconstruct the 3D voxel model in an unsupervised man-
ner. To avoid the dense prediction of the voxel format,
Pixel2Mesh [64, 68] is a fully supervised learning work
with the well-designed regularization, which reconstructs
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Figure 3: The Structural Causal Map (SCM). We compare the proposed method with three typical 3D reconstruction works, including
CSM [24], UMR [26], and SMR [17]. Here we show the image reconstruction loop, i.e., “2D → 3D → 2D”. (a) Given one 2D image and
the foreground mask, CSM only applies two encoders for Camera and Texture, since it assumes that the basic shape is shared, ignoring
intra-class changes. (b, c) UMR and SMR further introduce the shape encoder, which is to predict the shape offset. The final shape is
obtained by adding the shape offset to the shape template. (d) In this work, we argue that the predicted shape offsets are also conditioned
on the prior template. Besides, the prior template also impacts the camera prediction. Therefore, we explicitly introduce the dependency
with the prior prototype. It is worth noting that our prototype is initialized from an ellipsoid and iteratively updated during training, which
does not require any hand-crafted initialization. (Qualitative comparison with more other methods is listed in Table 1.)

mesh by deforming an ellipsoid. VPL [21] leverages view-
point annotation to ensure mesh reconstruction consistency
via adversarial training. To invade the viewpoint annota-
tion, one of the early works is Canonical Surface Mapping
(CSM) [24], which treats 3D reconstruction as a dense key-
point estimation problem. However, CSM deploys a fixed
pre-defined shape template, which largely limits intra-class
shape changes for different instances. To address the shape
limitation, CMR [20] first proposes to use a learnable shape
template and Li et al. [26] further proposes UMR, which
adopts a two-stage training strategy for template updating.
The segmentation parsing [18] is used in UMR for better
alignment. The contemporary work, IMR [60], first intro-
duces the mapping function instead of the vertex location
regression, saving computation costs. Taking a further step,
SMR [17] aligns the 3D mesh via mix-up and conducting
the auxiliary vertex classification, while MeshInversion [77]
deploys foreground prediction. The proposed method is
mainly different from existing works in three aspects: (1)
Weaker supervision. As shown in Table 1, the proposed
method demands limited supervision and mainly leverages
the large-scale multi-view images to learn prior knowledge.
(2) Model design. As shown in Figure 4, the network de-
sign follows the causal map. (3) Optimization strategy. To
deal with the compensation effect in the loss punishment,
we deploy the “intervention” tool, i.e., two expectation-
maximization loops, to facilitate the 3D attribute learning.

Causal Learning. Causal learning is to identify causalities
from a set of empirical factors, which can be either pure
observations or counterfactual inference [44]. To repre-
sent causalities, a causal model is usually defined via struc-
tural equations and graphs [42]. According to the structural
causal model, manipulations can be conducted to optimize
the estimated relations between variables, e.g., “Do” oper-
ation is to cut certain directed edges and control the target
variable [42]. One line of works using the counterfactual
thought is to conduct data augmentation [5, 27, 37, 48, 67]
and obtain the debiased prediction [39,59,76]. Another line

of works on the generative model mainly explores implicit
causal learning to discover the causal factors during train-
ing [33, 78]. CausalGAN [23] trains a generator, which is
consistent with an implicit causal graph, and is able to sam-
ple from either conditional labels or interventional distribu-
tions. Similarly, CausalVAE [73] is a VAE-based causal
framework, which discovers latent causal factors in data
with graph constraints. Both methods implicitly harness
causal mapping by learning latent code or adding one graph
constraint. However, the causality learned from data is not
always accurate and explainable, limiting the causality ef-
fect. Differently, our model follows the spirit of causal-
ity between semantic entities to (1) explicitly consider the
causality relation between entities, e.g., leveraging the prior
template to help both camera encoder and shape encoder
learning; and (2) explicitly apply “intervention” tools to
solve the ambiguity of learning multiple variables.
Expectation Maximization (EM). EM is an iterative
method to find the parameters with maximum likelihood in
statistical models [38]. The EM algorithm iteratively con-
ducts two kinds of steps: an expectation step (E-step) to ob-
tain the expectation of latent variables and a maximization
step (M-step) which computes parameters to maximize the
expected likelihood based on the latent variables. Since the
M-step updates parameters, it affects the E-step in the next
round. In this way, the EM algorithm can keep updating un-
til the convergence, and is usually applied to scenarios that
miss the observation of implicit variables, such as Gaussian
mixture model [71]. For 3D reconstruction, we also meet a
similar problem to estimate the four reconstruction factors
simultaneously. Inspired by EM, we propose a similar opti-
mization strategy in our work, and this process actually is a
“Do” operation in the causal map [43].

3. Method
3.1. Overview

Given a clothing image Ii and the foreground mask Mi,
we aim to infer the corresponding 3D mesh with texture
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Figure 4: Overview. Here we show a “2D→3D→2D” loop. We
follow the causal map in Figure 3 (d) to design the pipeline. Given
one pair of clothing image Ii and the mask Mi, we deploy four
independent encoders Ec, Es, EUV , and EA for camera position,
shape, texture and light estimation. We introduce the integration
module (IM) to fuse the local feature from 3D prior template S̄.
Then we apply the colorize function ϕ to obtain the mesh, and uti-
lize the render to re-project the mesh into 2D space via the project
function π. Finally, we obtain the reconstructed Îi and M̂i. Dur-
ing inference, we manipulate intermediate camera attributes Ci to
generate novel-view images of the target person.

(see Figure 4), where i ∈ [1, N ] and N is the number of
the samples in the dataset. We do not require any extra 3D
annotations. In this work, we explicitly follow the struc-
tural causal map in Figure 3 (d) to build the whole pipeline.
Generally, the spirit of causality helps us to (1) disentan-
gle the 3D attributes from inherent correlations, such as the
ambiguity between the shape and camera encoder; (2) re-
consider the causal relation between entities, such as the
3D prior template (prototype) and camera position estima-
tion. Specifically, we deploy four independent encoders,
i.e., shape encoder ES , camera pose encoder EC , illu-
mination encoder EA and texture encoder EUV . The
decoder is based on the differentiable render [9], which
does not contain any learnable parameters. Therefore, we
can also regard the render as a fixed decoder. Following
existing works [24, 26], we also introduce a 3D prototype
S̄ ∈ R|S̄|×3, which explicitly involves the prior body struc-
ture to the network learning. The 3D prior template can be
initialized with an arbitrary mesh. Without loss of general-
ity, we apply the elliposid (contains 642 vertices and 1280
faces) to initialize the 3D prior template. Here we set 642
vertices as the default setting to illustrate the proposed ap-
proach. During training, we keep updating the prior tem-
plate S̄. When inference, the model deploys the latest 3D
prior template (prototype).

3.2. Model Structure

Shape Encoder. We follow the causal map to explicitly
introduce 3D prior into the encoder learning. Given a input
image-mask pair Ii, Mi and 3D prior template S̄, the shape
encoder predicts the offsets ∆Si ∈ R642×3 for every vertex:

X
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Local Features

Visual Feature

Image
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Figure 5: Integration Module (IM). We harness IM to explicitly
fuse the prior spatial information from template S̄ and the visual
feature from (Ii,Mi). The visual feature is the output of the back-
bone, e.g., HR-Net [75]. As the arrow direction, we leverage the
grid sampler to obtain the local feature from the corresponding X-
Y of the visual feature. We concatenate global features and local
features as final outputs.

∆Si = ES(Ii,Mi, S̄), (1)
Si = S̄ +∆Si. (2)

The final 3D shape Si is the sum of the 3D prior template
and the 3D per-vertex offsets, and Si ∈ R642×3. Different
from most existing works [17,26], which independently es-
timates ∆Si from the input image Ii and the mask Mi, our
shape encoder explicitly takes the prior template into the
deformation prediction as ES(Ii,Mi, S̄). The main idea
is straightforward, since predicting shape offsets depends
on foreknowing the shape prior. We explicitly provide the
shape template to help the training. In particular, the shape
encoder contains a CNN-based backbone, an integration
module (IM) and a fully connected layer (fc).
Integration Module. As shown in Figure 5, we fuse the
visual feature from both the input image/mask and the 3D
prior template. We harness the integration module (IM) to
extract the local visual feature according to the 2D location
by projecting the 3D template to the X-Y plane. On the
other hand, the global feature is generated by averaging the
input visual feature (by global average pooling) and then we
repeat the aggregated feature as the original size. The final
∆Si is predicted by a fully-connected layer on the concate-
nated feature of both global features and local features.
Camera Pose Encoder. Similarly, the camera pose estima-
tion also depends on the shape prior and the image. How-
ever, previous works usually ignore the causal dependency
on the shape prior S̄. When people infer the object position,
e.g., distance, azimuth, and elevation, it is necessary to fore-
know the general object shape (general size, general shape,
and symmetry to which axis). Therefore, we also deploy a
basic convolutional neural network (CNN) followed by an
integration module (IM) and fully-connected layers as the
camera pose encoder, which can be formulated as:

Ci = EC(Ii,Mi, S̄), (3)
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where Ci contains four factors, i.e., distance (1-dim), az-
imuth (1-dim), elevation (1-dim), and X-Y position offset
(2-dim). “dim” is dimension. The distance is also formu-
lated as object scale in other works [26], while the azimuth
is called as the rotation degree. We notice that several exist-
ing works [17] do not include X-Y position, since they as-
sume that the object is in the center, but we find that includ-
ing X-Y position prediction actually improves the camera
robustness during both training and testing. (Please see the
discussion on camera attribute distribution in experiment.)
Illumination Encoder. The illumination encoder is to
regress the illumination direction and strength, which can be
simply formulated as a 9-channel Spherical Harmonics co-
efficient [6]. Therefore, we adopt a basic convolutional neu-
ral network followed by a 9-channel fully-connected layer
to predict the illumination vector from the input image-
mask pair:

Ai = EA(Ii,Mi). (4)
Texture Encoder. In this work, we do not predict the color
for every vertex. We follow existing works [20, 24] to learn
a texture flow as the UV map by a U-Net structure [49].
Given the input image Ii and the corresponding foreground
mask Mi, we first predict the texture flow and then map the
color according to the spatial location.

UVi = EUV (Ii,Mi). (5)

Decoder (Render). Finally, the decoder, i.e., render, can
reconstruct the 3D mesh with color by simply combining
the shape Si and UVi. If we want to re-project the mesh
to the 2D space, we further need the camera pose Ci and
the illumination direction Ai. Therefore, the reconstructed
image Îi can be written as:

Îi = π(ϕ(Si, UVi), Ci, Ai), (6)

where ϕ is the function to colorize the 3D mesh Si with the
UV map UVi. π denotes the projection function mapping
the mesh through camera parameters Ci with the illumina-
tion Ai. As a side product, we can also obtain the recon-
structed foreground mask M̂i during projection. We note
that both ϕ and π are based on the physical mapping, so
there do not contain any learnable parameters.

3.3. Optimization Objectives

Image Reconstruction Loss. As shown in the right part
of Figure 6, we calculate the pixel level l1 loss of the fore-
ground area between the reconstructed image and the input:

Limg = E[||Ii ⊙Mi − Îi ⊙ M̂i||1], (7)
where ⊙ denotes element-wise multiplication, and E de-
notes the expectation. Îi and M̂i are the reconstructed im-
age and mask projected from the 3D mesh. We note that the
Limg focuses on the low-level input. Sometimes the gen-
eration quality is good but with small position shifts. To
further ensure the generation quality from high-level acti-
vations, we also introduce the adversarial loss:
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3D Prior Template
(Prototype)

3D Offsets

Reconstructed Image & Mask

3D Mesh

Render (Fixed)

Encoder

Project

3D Shape Camera Pose Illumination Texture

3D Prior Template
(Prototype)

3D Offsets Encoder

3D Attribute
Reconstruction

Image
ReconstructionMesh

Regularization

Figure 6: Optimization Objectives. Here we show three kinds of
losses on the causal map, which are the image reconstruction loss,
the attribute reconstruction loss and the mesh regularization.

Ladv = E[logD(Ii ⊕Mi) + log(1−D(Îi ⊕ M̂i))], (8)

where ⊕ means concatenation. For instance, Ii ⊕ Mi is
a 4-channel input. D denotes a multi-layer discriminator
to classify whether the input is real or generated from our
render. In practice, we adopt a basic WGAN structure [1] as
the discriminator. Otherwise, we introduce the IoU loss to
compare the overlapping area between the generated mask
with the ground-truth input mask:

LIoU = E[1− Mi ∩ M̂i

Mi ∪ M̂i

]. (9)

Attribute Reconstruction Loss. As shown in Figure 6 left
part, we also conduct the 3D attribute reconstruction to en-
sure that the encoder and the decoder are self-consistent:

Latt = E[||Si − ES(Îi, M̂i, S̄)||1] + E[||Ci − EC(Îi, M̂i, S̄)||1]

+ E[||Ai − EA(Îi, M̂i)||1] + E[||UVi − EUV (Îi, M̂i)||1].
(10)

The 3D attributes predicted from the reconstructed image Îi
should be the same as the predicted attribute from Ii.
Mesh Regularization. (1) Laplacian loss [64] is a reg-
ularization to prevent self-intersection of mesh faces. It
encourages adjacent vertices to move in the same direc-
tion, consequently, avoiding the local part of the mesh
producing outrageous deformation. For each vertex posi-
tion p in the mesh shape Si, the laplacian coordinate is
δp = p −

∑
k∈K(p)

k
||K(p)|| , where K(p) is the neighbor

vertices of p with connected edges. Specifically, the lapla-
cian loss can be defined as Llpl = E[||δ̂p − δp||22], where
δ̂p and δp are laplacian coordinates of a vertex before and
after the updation respectively; (2) Flatten loss is another
regularization for keeping faces from intersecting [64]. The
cosine of the angle between two adjacent faces is calculated.
The flatten loss is defined as Lflat = E[(cos(∆θi) + 1)2],
where ∆θi is the angle between two adjacent faces. The
angle around 180◦ implies a smooth mesh surface; (3)
Symmetry loss constrains mesh deformations to be reflec-
tional symmetric in the depth [60]. It can be expressed as
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Lsym = E[||Z(p) + Z(p̃)||1], where Z denotes the depth
of the vertex and p̃ is the reflected vertex of p; (4) Defor-
mation loss [20, 26] is a regularization to prevent the mesh
from deforming excessively and facilitate the average shape
learning: Ldeform = E[||∆S||2].
Total Loss. We train four encoders and the discriminator
to optimize the total objective, which is a weighted sum of
above-mentioned losses:

Ltotal = λrec(Limg + LIoU ) + λattLatt + λadvLadv

+ λreg(Lsym + Ldeform + λlplLlpl + λflatLflat).
(11)

In practice, we refer to existing works [17,26,64] and empir-
ically set λrec = 2, λatt = 1, λadv = 1×10−5, λreg = 0.1,
λlpl = 0.1, and λflat = 0.01.

3.4. Optimization Strategy

Following the causality-aware design, two loops are
introduced during optimization as the causal “inter-
vention” tools. While estimating one cause, the rela-
tions between the outcome and the other “colliders” are
cut off. In this way, the encoder loop helps to disentan-
gle the correlated relations between the four 3D attributes
Si, UVi, Ci, Ai, while the prototype loop separates the pro-
totype updating S̄ from the shape offset estimation ∆Si.
Encoder Loop. During the implementation, we notice one
main challenge is simultaneously optimizing the four en-
coders. The problem mainly lies in the image reconstruc-
tion loss. For instance, even if three out of four encoders
provide correct prediction, the rest provides the wrong at-
tribute, such as incorrect shape offsets. All four encoders
are penalized equally. This is one typical “collider” case
in causality. Therefore, one straightforward idea is to train
one encoder (predict one cause) while fixing the other three
encoders (control other causes). In this way, we can ef-
fectively penalize the target encoder. In particular, we
adopt one expectation-maximization loop, which also is
an “invention” tool in causal learning. For example, we
fix the three encoders, e.g., Ec, EA, EUV , to cut the ar-
rows from inputs to three attributes, i.e., Ci, Ai and UVi.
Only the shape attribute Si still keeps the dependency from
the input image-mask pair. Hence, when the loss is back-
propagating, only the shape encoder is penalized. In this
way, we disentangle four encoders not only in the forward
passing design (independent encoder weights) but also in
the loss of back-propagation.
Prototype Loop. We also observe a common ambiguity be-
tween prototype updating and shape estimation. The prob-
lem is mostly due to Eq. 2. Since it is an addition equa-
tion, during gradient back-propagation, S̄ and ∆Si receive
the punishment equally. It is hard to distinguish S̄ from
∆Si. Therefore, we adopt the causal invention tool, i.e.,
Expectation-Maximization, again. During training, we fix
the prototype (control one cause) and maximize the shape
offsets likelihood (predict another cause). After every train-

Table 2: Comparison with two off-the-shelf template-based meth-
ods on the human clothing ATR dataset. Since no texture map-
ping is contained in the template-based methods, we only compare
MaskIoU (%), which reflects the “2D → 3D → 2D” reconstruc-
tion quality on the unseen test set.

Methods HMR [19] ROMP [55] Ours
MaskIoU (%) ↑ 69.7 70.3 81.1

ing epoch, we leverage the mean shape offsets to update
S̄ = S̄ + E[∆S]. In practice, different from existing works
(e.g., two-stage training [26]), we adopt a linear warming-
up strategy [12] to update prototype slowly in the early
epochs and harness the exception handling by clipping ex-
treme deformations. In this way, we disentangle the proto-
type updating from the shape offsets estimation and learn
the model in one go.

4. Experiment

We evaluate the proposed approach on two fashion
datasets, i.e., ATR [28] and Market-HQ [79], and a widely-
used bird dataset CUB [62]. Since there are no ground-truth
3D meshes, we follow existing works [17] and adopt 2D
metric, i.e., FID [15], SSIM [66], and MaskIoU, to evaluate
the “2D → 3D → 2D” process. FID compares the distribu-
tion of two sets of images. We denote the 3D reconstruc-
tion results as FIDrecon, the generated image with different
viewpoints as FIDnovel, following [17]. For Market-HQ,
we also report FID90 by comparing generated side-view im-
ages with real images. Please see supplementary material
for dataset preparation, structure and training details.

4.1. Quantitative Experiments

Comparison with Template-based Methods. We first
compare with the off-the-shelf template-based methods [19,
55] in Table 2. This line of methods is based on the body
template with great structure robustness, but is not well
scalable to the non-rigid clothing. Since no texture map-
ping function is built in the template-based methods, we fo-
cus on comparing MaskIoU (%), which reflects the “2D →
3D → 2D” shape reconstruction quality. We observe that
the proposed method achieves a higher MaskIoU score of
81.1% on the test set. The result is also consistent with the
visualization in Figure 1. For clothing reconstruction, the
proposed method is more scalable than the template-based
methods, covering more regions of interest.
Comparison with Single-image Reconstruction Meth-
ods. As shown in Table 3, we compare the proposed method
with other state-of-the-art approaches [2,6,17,20,25,26,74]
on CUB. MeshInversion [77] deploys test time optimiza-
tion, so here we do not include it. Among the exist-
ing works, SMR [17] has achieved the high-fidelity recon-
struction and novel-view generation performance. In con-
trast, the proposed method yields a better reconstruction
performance (81.8% MaskIoU and 83.5% SSIM). At the
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Figure 7: Novel-view 3D clothing generation from single images on the unseen test set of Market-HQ and ATR. (Please open the paper in
Adobe Reader to see the mesh rotation.) Here we gradually “Do” / change the camera azimuth degree to render the human.

Table 3: Comparison with other single-image reconstruction meth-
ods on the CUB bird dataset. MaskIoU (%) and SSIM (%) reflects
the front-view reconstruction quality on the unseen test set, while
FIDnovel compares the distribution difference between generated
images from novel views and the original dataset.

Methods MaskIoU (%) ↑ SSIM (%) ↑ FIDnovel ↓
View-gen [2] 61.7 - 70.3
ShSMesh [74] 70.7 - 161.0

CMR [20] 73.8 44.6 115.1
UMR [26] 73.4 71.3 83.6
DIB-R [6] 75.7 - -

ACMR-vid [25] 77.3 - -
SMR [17] 80.6 83.2 79.2

Ours 81.8 83.5 63.5

Table 4: Ablation Study on Market-HQ and ATR. “No IM” de-
notes that we remove the integration module. We observe that
although “No Encoder Loop” leads the model to over-fit the front-
view reconstruction FIDrecon, the side-view performance FID90

is extremely poor. In contrast, our full model takes a balance point
between reconstruction, i.e., MaskIoU, and novel-view generation,
i.e., FIDnovel. (Considering the majority of ATR test set is close-
frontal view, we do not report FID90 on ATR.)

Methods
Market-HQ ATR

MaskIoU SSIM FIDrecon ↓ FIDnovel ↓ FID90 ↓ MaskIoU SSIM FIDrecon ↓ FIDnovel ↓(%) ↑ (%) ↑ (%) ↑ (%) ↑
SMR† 81.0 66.1 23.6 60.0 120.5 78.5 72.9 38.5 76.7
No IM 72.0 56.4 44.6 72.5 107.7 77.3 72.4 43.0 81.6

No Prototype Loop 82.6 65.8 21.9 47.2 104.1 80.7 71.9 37.3 72.2
No Encoder Loop 82.9 67.9 17.4 49.2 176.0 76.7 71.6 33.1 67.0

Ours 83.4 66.3 21.5 46.7 93.3 81.1 72.6 35.9 66.8

†: For a fair comparison, we re-implement SMR with the same backbone
as ours and enable XY position prediction.

meantime, for novel-view generation, our method also has
achieved 63.5 FIDnovel, surpassing SMR by a clear margin.
Similarly, based on the same backbone, our method also
surpasses SMR on Market-HQ and ATR (see Table 4).

4.2. Qualitative Experiments

Reconstruction and Novel-view Results. As shown in
Figure 7, we reconstruct the person with non-rigid cloth-
ing. We could observe that the model not only successfully
learns legs and arms, but also captures non-rigid objects, in-
cluding hair, dress, and handbag. CUB results are in Fig. 10.
Exchanging Clothing. Inspired by 2D GAN-based
work [81], we also show the result of changing the texture
of any two persons but with a 3D mesh manner (see Fig-

ure 9). In particular, we apply the shape encoder and the
texture encoder to extract the shape Si and the UV texture
map UVj , respectively. Then we deploy the render to gen-
erate the new mesh based on Si and UVj . The first row and
the first column are the input RGB images. The rest is the
projected results of the new 3D meshes. We rotate the mesh
for better 3D visualization. It verifies the robustness of our
method. The learned UV map could be successfully aligned
to different human meshes, even though we have not intro-
duced any part annotations during the training process.
Manipulate Camera Attributes. Since four encoders are
disentangled, the proposed method could easily manipulate
3D attributes for customization. Besides the rotation (in-
terpolating the azimuth degree), we could also leverage the
learned model to change distance, elevation, and XY posi-
tion. As shown in Figure 8, we could observe that the pro-
posed method successfully disentangles these camera pa-
rameters and could control the projected result smoothly.

4.3. Ablation Study and Further Discussion

Does the two expectation-maximization loops help the
encoder learning? Yes. As shown in Table 4, we conduct
two ablation studies on Market-HQ and ATR. (1) One is to
stop the prototype updating, i.e., No Prototype Loop, and
we deploy the fixed elliposid as the basic shape. It directly
limits the shape deformation, compromising the reconstruc-
tion performance. (2) Besides, we also explore training all
the encoders simultaneously without the encoder loop as
“No Encoder Loop”. We observe that the model can eas-
ily over-fit the front-view reconstruction quality but it does
not perform well in the novel view, especially when we look
at the 3D mesh from the side view, i.e., 90◦.
Does the integration module work? Yes. We design the
integration module to explicitly fuse the prior prototype as
local features for learning shape. Removing the integration
module, i.e., No IM, leads to a performance drop in both
reconstruction and novel-view generation (see Table 4).
Person Re-id. One interesting problem remains whether
our learned 3D human model can facilitate downstream
tasks, such as person re-id, which intends to match the
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Figure 8: Novel-view 3D clothing generation from single images on the unseen test set of Market-HQ. Here we gradually “Do” / change
the camera distance, elevation and XY-position to render the human. (Please open the paper in Adobe Reader to see the movement.)

Figure 9: 3D clothing changing by exchanging the 3D mesh shape
and texture. (Please open Adobe Reader to see the movement.)

pedestrian from different viewpoints. We do not intend to
pursue state-of-the-art performance, but verify the relative
improvement of using the generated data (see Table 5). We
observe that our generated 3D-aware images can facilitate
re-id representation learning. More details are in suppl.
Camera Attribute Distribution. We observe that the cam-
era encoder successfully captures the camera distribution in
the Market-HQ test set, which is aligned with the dataset
collection setting. Please check suppl. for details.
Limitations. There are two faces or two backs of heads on
one reconstructed mesh, commonly called Janus Issue. It is
because our work is still based on a single image, and the
learned model only “sees” one single view of the human.
Especially on ATR (most photos are close-frontal faces), it
can not learn the 3D prior, i.e., one person only has one face.

Table 5: The re-id performance improvement on Market-1501. We
train two competitive backbones. The results suggest that our gen-
erated 3D-aware data can further facilitate representation learning.

Methods Training Set Rank@1 mAP

ResNet50-ibn [40] Original 94.63 87.37
Original+3D 95.07 87.80

HR18-Net [63] Original 94.74 88.13
Original+3D 95.43 88.54

Figure 10: Novel-view 3D bird generation on the test set of CUB.

Therefore, even if we introduce WGAN discriminator [1],
it can not provide 3D-aware adversarial loss. The model
still largely relies on the symmetric structure to generate
the back view. Hence, we think that, in the future, the large-
scale multi-view image datasets [16] may help to further
solve this limitation upon our work. We also tried simply
replacing the ellipsoid with an SMPL template [34], but it
fails due to the optimization problem on too many vertices
& initial arm position (see suppl. discussion).

5. Conclusion
In this paper, we study the 3D clothing reconstruction

task to build a “3D Magic Mirror”. We follow the spirit
of the structural causal map to re-design the output depen-
dency, and leverage two expectation-maximization loops to
facilitate the training process. Despite using relatively weak
supervision, the proposed method is still competitive with
other existing works, and shows great scalability to differ-
ent non-rigid objects. In the future, we will further explore
the applications to multi-modality generation [72] and 3D
object re-id [13, 54, 80].
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A. Dataset Preparation

ATR. ATR is a large-scale fashion dataset [28]. It contains
17, 700 human body images, with 18 detailed semantic an-
notations for every image. The dataset is split into 16, 000
training images, 700 validation images, and 1, 000 test im-
ages. In this work, we do not use any part segmentation
annotations but only leverage the binary foreground mask
as the weak annotation. It is because foreground masks are
easy to obtain, which is closer to our application in real-
world scenarios.
Market-HQ. We build a high-resolution variable of the
Market-1501 dataset [79] based on academic usage. The
original Market-1501 is with a relatively low resolution
of 128 × 64. We first apply Real-ESRGAN [65] to up-
sample the images to 512 × 256. To acquire the fore-
ground mask, we have tried the off-the-shelf human parsing
model [35, 50], but such models suffer from the dataset do-
main gap. Instead, we apply HMR [19] to obtain the pseudo
foreground mask via 2D projection. As a result, Market-
HQ contains 12, 936 images of 751 persons for training and
3, 386 test images of other 750 persons. There is no over-
lapping human appearing in both the training and test set.
CUB-200-2011. CUB-200-2011 is one of the prevailing
datasets for single-view 3D reconstruction tasks [62]. It
contains images from 200 subcategories of birds, of which
5, 994 are for training and 5, 794 are for testing. 2D fore-
ground masks and keypoints are provided. In this work, we
only deploy 2D foreground masks.

B. Implementation Details

Our model consists of four encoders, one render, and
one discriminator. Four encoders and the discriminator are
implemented based on Pytorch [41], and the differentiable
render is from Kaolin [9]. In the following part, we use
channel × height × width to indicate the size of feature
maps. For training Market-HQ, all input images are resized
to 128× 64 from a high resolution and the image quality is
still better than that of images in the original dataset. For
ATR, all input image is resized as 160× 96. For CUB Bird,
all images are padded to a square input and then resized
to 128 × 128. During the evaluation, some generated re-
sults are up-sampled to 256 × 256 for a fair comparison.
Random horizontal flipping is used for data augmentation.
We apply Adam [22] to optimize the encoders with a mini-
batch of 48 and set the basic learning rate as 5× 10−5, and
(β1, β2) = (0.95, 0.99). The number of training epochs is
set as 600. Besides, since the backbone model, i.e., HRNet-
Lite [75], has been pre-trained on ImageNet, we do not in-
tend the backbone to update too fast and set the learning
rate of the backbone as 0.05× the basic learning rate. We
also modified the first layer of HRNet-Lite for 4-channel
input (RGB image + foreground mask). In particular, we

apply the mean filter weights of the original first convolu-
tional layer to initialize the fourth channel filters. Next, we
illustrate the network architecture in detail.

C. Network Architectures
The proposed method consists of the camera encoder

EC , shape encoder ES , texture encoder EUV , illumina-
tion encoder EA and discriminator D. Following the com-
mon practice in GANs, we mainly adopt convolutional lay-
ers and residual blocks [14] to construct them. The model
can be applied to different input scales. Taking the Mar-
ket dataset as an example, we utilize the input size as
4 × 128 × 64 for illustration. MMPool denotes the gem
pooling [46], which is a weighted sum of average pooling
and max pooling.

(1) Shape Encoder: Table 6 shows the architecture of Es.
We apply the backbone network, i.e., HRNet-Lite-v2 [75],
to extract the visual feature. Then we apply the Integra-
tion Module (IM) to fuse the visual feature and 3D prior
template. In the IM block, we concatenate the local feature
(2048-dim), global feature (2048-dim), neighbor difference
feature (2048-dim), and the template coordinate (3-dim), so
the output size of the IM is 6147 dimensions. In practice,
we simply subtract the local feature of every vertex with the
mean neighbor feature as the neighbor difference feature,
where the mean neighbor feature is the mean local feature
of the connected vertex. After each convolutional layer, we
generally apply the batch normalization layer and LReLU
(negative slope set to 0.2). Finally, we obtain 1926-dim
(1926 = 642× 3) output, which is the XYZ biases for 642
vertices as ∆S.

(2) Camera Position Encoder: Table 7 shows the ar-
chitecture of encoder Ec. We deploy residual blocks and
convolutional layers to build the model. For better loca-
tion estimation, we follow CoordConv [31] and concatenate
the grid. ResBlock half denotes the downsampling block
with residual connection from [14]. Since we concatenate
the downsampled input, the output size of ResBlock half
is doubled. The final IM simply concatenates the local
feature and global feature, so the output size is 576 ×
2 × 2. We then flatten the feature and apply three in-
dependent MLPs (each contains 2 fully-connected layers)
for azimuthsy & azimuthsx (2-dim), elevation & dis-
tance (2-dim), and XY-biases (2-dim). The final azimuth is
arctan(azimuthsy/azimuthsx), which is one dimension.

(3) Illumination Encoder: As shown in Table 8, we de-
ploy one convolutional neural network to predict the illumi-
nation (9-dim). We apply both the batch normalization layer
and LReLU (negative slope set to 0.2) after every convolu-
tional layer.

(4) Texture Encoder: We deploy a U-Net structure in [17]
and adopt light-weight ResNet34 [14] as U-Net encoder.
We also adopt the BiFPN structure [57] to facilitate the
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Table 6: Architecture of the shape encoder ES .

Layer Parameters Output Size
Input - 4 × 128 × 64
Backbone 16 M 2048 × 4 × 2
(HRNet-Lite-v2)
IM Module - 6147 × 642 × 1
Conv1d [ 1×1, 256 ] 256 × 642 × 1
Conv1d [ 1×1, 3 ] 3 × 642 × 1
FC [1926, 1926] 1926

Table 7: Architecture of the camera position encoder EC .

Layer Parameters Output Size
Input - 4 × 128 × 64
AddCoords2d - 6 × 128 × 64
Conv [ 5×5, 36 ] 36 × 64 × 32

ResBlock half
[

3×3, 36
3×3, 36

]
×1 72 × 32 × 16

ResBlock
[

3×3, 72
3×3, 72

]
×1 72 × 32 × 16

ResBlock half
[

3×3, 72
3×3, 72

]
×1 144 × 16 × 8

ResBlocks
[

3×3, 144
3×3, 144

]
×3 144 × 16 × 8

ResBlock half
[

3×3, 144
3×3, 144

]
×1 288 × 8 × 4

ResBlocks
[

3×3, 288
3×3, 288

]
×6 288 × 8 × 4

IM - 576 × 8 × 4
MMPool - 576 × 2 × 2

MLPs × 3
[

2304, 128
128, 2

]
×3

128 × 3
2 × 3

communication between different layers when decoding.
Due to the limitation of the table, we could not show the
skip connections and the entire up-sampling process of de-
coder. Therefore, here we only show the main components
in Table 9. The final UV map is symmetric, so we concate-
nate the mirrored output.

(5) Discriminator: We deploy one convolutional neural
network to obtain the real/fake prediction (see Table 10).
We only apply LReLU (negative slope set to 0.2) after every
convolutional layer.

D. More Ablation Studies
Person Re-id Implementation and Discussion. One in-
teresting problem remains whether our learned 3D human
model can facilitate downstream tasks, such as person re-
identification (re-id), which intends to match the pedestrian
from different viewpoints. To verify this point, we conduct

Table 8: Architecture of the illumination encoder EA.

Layer Parameters Output Size
Input - 4 × 128 × 64
Conv [ 5×5, 32 ] 32 × 64 × 32
Conv [ 5×5, 64 ] 64 × 32 × 16
Conv [ 5×5, 96 ] 96 × 16 × 8
Conv [ 5×5, 192 ] 192 × 8 × 4
Conv [ 5×5, 96 ] 96 × 4 × 2
MMPool - 96 × 1 × 1
FC [96, 48] 48
FC [48, 9] 9

Table 9: Architecture of the texture encoder EUV .

Layer Parameters Output Size
Input - 4 × 128 × 64
Conv (ResNet-34) [ 7×7, 64 ] 64 × 64 × 32
MaxPooling 64 × 32 × 16

ResBlock (ResNet-34)
[

3×3, 64
3×3, 64

]
×3 64 × 32 × 16

ResBlocks (ResNet-34)
[

3×3, 128
3×3, 128

]
×4 128 × 16 × 8

ResBlocks (ResNet-34)
[

3×3, 256
3×3, 256

]
×6 256 × 8 × 4

ResBlock (ResNet-34)
[

3×3, 512
3×3, 512

]
×3 512 × 4 × 2

Conv [ 3×3, 256 ] 256 × 4 × 2

ResBlock
[

3×3, 256
3×3, 256

]
×1 256 × 4 × 2

Upsample - 256 × 8 × 4
Conv [ 3×3, 128 ] 128 × 8 × 4

ResBlock
[

3×3, 128
3×3, 128

]
×1 128 × 8 × 4

Upsample - 128 × 16 × 8
Conv [ 3×3, 64 ] 64 × 16 × 8

ResBlock
[

3×3, 64
3×3, 64

]
×1 64 × 16 × 8

Upsample - 64 × 32 × 16
Conv [ 3×3, 64 ] 64 × 32 × 16

ResBlock
[

3×3, 64
3×3, 64

]
×1 64 × 32 × 16

Upsample - 64 × 64 × 32
Conv [ 3×3, 32 ] 32 × 64 × 32

ResBlock
[

3×3, 32
3×3, 32

]
×1 32 × 64 × 32

Upsample - 32 × 128 × 64
Conv [ 3×3, 2 ] 2 × 128 × 64
Tanh - 2 × 128 × 64
Project Grid Sampler 3 × 128 × 64
Concat Flipping 3 × 256 × 64

a preliminary experiment via dataset augmentation. In par-
ticular, we randomly mix up the texture from two different
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Table 10: Architecture of the discriminator D.

Layer Parameters Output Size
Input - 4 × 128 × 64
Conv1 [ 1×1, 16 ] 16 × 128 × 64
Conv2 [ 3×3, 16 ] 16 × 128 × 64
Conv3 [ 3×3, 32 ] 32 × 64 × 32
Conv4 [ 3×3, 32 ] 32 × 64 × 32
Conv5 [ 3×3, 48 ] 48 × 32 × 16
Conv6 [ 3×3, 48 ] 48 × 32 × 16
Conv7 [ 3×3, 64 ] 64 × 16 × 8
Conv8 [ 3×3, 64 ] 64 × 16 × 8
Conv9 [ 3×3, 64 ] 64 × 8 × 4
Conv10 [ 3×3, 64 ] 64 × 8 × 4
Conv11 [ 3×3, 64 ] 64 × 4 × 2
Conv12 [ 3×3, 64 ] 64 × 4 × 2
Conv13 [ 3×3, 48 ] 48 × 2 × 1
Conv14 [ 3×3, 32 ] 32 × 2 × 1
Conv15 [ 1×1, 1 ] 1 × 2 × 1
Mean - 1

Table 11: Architecture of the IM Module.

Data Layer Parameters Output Size
Input Feature - 2048 × 4 × 2
Template - 3 × 642 × 1
Local Grid Sampler - 2048 × 642 × 1

Global Pooling - 2048 × 1 × 1
Repeat - 2048 × 642 × 1

Neighbor Matrix - 2048 × 642 × 1
(Optional) Multiplication -
Output Concat - 6147 × 642 × 1

real identities to form one new virtual pedestrian identity
class, and then render five projections of the 3D mesh from
-60◦, -30◦, 0◦, 30◦, and 60◦ rotation. As a result, we obtain
77,566 training images of 12,991 identities (751 real identi-
ties + 12,240 virtual identities), which enlarge about 6 times
images compared with the original Market training set. We
train the model with the common setting, such as dropout,
random erasing, and horizontal flipping [56, 83]. The final
feature dimension is set as 2048 instead of 512 to preserve
more visual clues. For a fair comparison, we try our best
to tune the baseline and select the most competitive hyper-
parameter to report a reliable and competitive baseline re-
sult (see Table 5). For the ResNet50-ibn baseline, we train
the model with a learning rate of 0.004, batch size of 16,
and dropout of 0.75. Similarly, for the HRNet-w18 base-
line, we train the model with a learning rate of 0.005, batch
size of 16, and dropout of 0.75. On the other hand, since we
add many inter-class variants via 3D generation, we train
the baseline on our generated dataset (Original+3D) with a
smaller dropout rate of 0.2. We also set a larger batch size

for faster training. For ResNet50-ibn, we train the model on
the generated data with a learning rate of 0.045, and batch-
size of 192. Since the parameter of HRNet-w18 is larger
than ResNet50-ibn, due to the GPU memory limitation, we
set batchsize as 160 with a learning rate of 0.055.
Camera Attribute Distribution. We observe that the cam-
era encoder successfully captures the camera distribution in
the Market-HQ test set. As shown in Figure 11, most sam-
ples are 2 ∼ 4 unit distances from the camera, and most
persons are in the center of the figure with 0 X-Offsets and
0 Y-Offsets. Most samples appear in 0◦, 180◦ or -180◦,
which means that most people are facing towards or back-
ward to the camera. It is aligned with the dataset setup
since cameras are set up in front of the supermarket en-
trance or exit. The elevation of most samples is from -10
to 10, which is also aligned with the data collection setup,
i.e., six horizontal-view cameras. Besides, we also show
the distribution of mean shape offset ∆S. We observe that
most deformations are relatively small since we have intro-
duced the 3D prior template. In a summary, the learned
attribute statistics verify that we disentangle the camera
hyper-parameter, e.g., scale changes and position offsets,
from the shape encoder.
SMPL Initialization. Actually, our method is compatible
with SMPL initialization, but it is worth noting that we still
need to carefully consider several engineering problems. (1)
Directly using SMPL as a general prototype? We failed.
Most people in our datasets are walking with arm close to
their bodies. The model does not converge, since the ris-
ing arm is in the canonical SMPL model. (2) Why not use
SMPL model estimation for every individual people instead
of a global prototype? Yes. It is a great idea. We apply the
state-of-the-art ROMP [55] to obtain the SMPL mesh for
every image as the initial shape. However, another prob-
lem arises. The SMPL model contains too many vertexes
(12,943) than our basic ellipsoid (642). It also arises the
optimization problem during training. The model also does
not converge. In the future, we would like to consider other
down-sampling strategies. (3) In the future, we may also try
LBS and inverse LBS functions like [16] to conduct canoni-
cal mapping, and it may align the representation to deal with
the optimization problem. However, these techniques may
be beyond our work. Therefore, we leave them as future
work.
About EMA. We do not report the result with the weight
moving average for a fair comparison with other methods
in the main paper. EMA [58] actually can further boost our
performance, and we conduct EMA for the last 100 train-
ing epochs. As shown in Table 12, there are significant
improvements in SSIM and MaskIoU, while FID is fluc-
tuating. Actually, it is close to our observation. No matter
whether we apply EMA, we observe that the visual results
are still close to the ones without EMA. EMA successfully
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Table 12: Ablation Study of EMA on Market-HQ and ATR.

Methods
Market-HQ ATR

MaskIoU SSIM FIDrecon ↓ FIDnovel ↓ FID90 ↓ MaskIoU SSIM FIDrecon ↓ FIDnovel ↓(%) ↑ (%) ↑ (%) ↑ (%) ↑
Ours 83.4 66.3 21.5 46.7 93.3 81.1 72.6 35.9 66.8

Ours +EMA 87.1 74.0 20.0 47.3 94.3 84.3 80.3 32.6 65.4

Figure 11: Histogram of 3D Camera Attributes C on Market-HQ.
Here we show the distribution of azimuths, distances, elevations,
Offsets-X and Offsets-Y. Besides, we also provide the distribution
of the mean shape offset ∆S over the test set.

replaces some visual changes with a more stable prediction.
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